The main
$$\Gamma$$
 countering use result for the cell problem states so follows: 26.11.2024
The Fix sepero and f: $\mathbb{R} \times \mathbb{R} \longrightarrow [0, +\infty]$ satisfying
i) I as a carathériday function;
ii) I are the map $f(\cdot, 2)$ is a periodic;
iii) for a.e. xell the map $f(x, \cdot)$ is convex;
ior) then exists cell π at $|2|^r \leq f(x, 2) \leq c(|2|^r + 4)$,
and define the sequence $F_e: L^p(0, 4) \longrightarrow [0, +\infty]$ ($\epsilon \in \mathbb{R}^{+1}$).
and define the sequence $F_e: L^p(0, 4) \longrightarrow [0, +\infty]$ ($\epsilon \in \mathbb{R}^{+1}$).
Then, there exists flow: $\mathbb{R} \longrightarrow [0, +\infty)$ convex s.t. $\{F_e\}_e^{-1} = Converges to$
 $F_{Row}: L^p(0, 4) \longrightarrow [0, +\infty]$
 $u \longmapsto \int_{0}^{4} f(x, -u^{-1}(x)) dx + if us W^{1,p}(0, s)$
 $u \longmapsto \int_{0}^{4} f(x, -u^{-1}(x)) dx + if us W^{1,p}(0, s)$
 $u \longmapsto \int_{0}^{4} f(x, -u^{-1}(x)) dx + u \leq W^{1,p}(0, s)$ and $u(0) = u(s)$?.
Remark: Note that, by the direct methods in Cole. Vore, the previous minimization
problem has alwaye shored that $f_{hom}(\frac{1}{2}) = \lim_{x \to \infty} g_{\tau}(\frac{1}{2})$,
 $u \mapsto g_{\tau}(\frac{1}{2}) = \min_{x \to \infty} \left\{ \frac{1}{\tau} \int_{-\tau}^{\tau} f(x, \frac{1}{2} + u^{-1}(x)) dx + u \in W^{1,p}(0, -\tau) \right\}$.
i.e. it looks there of a supervisition of the start of the s

In this 4-dimensional case, one can use a "direct opproach" of E-coursequee,
which is broad on undertainding at first who can be a conditate for the
I-direct and then show I-convergence, by definition.
Unfortunatly, it will not be possible in the m-dimensional case (mod) where
our made to use an "indirect opproal".
Before proving the previous theorem, we need the following preliminory perult.
Lemma Set us, use W^{1,0}(0,1), 30M, notably
$$u_3 \longrightarrow u$$
 in L⁰(0,1) and let
 $\frac{1}{2E_3} \in \mathbb{R}^+$ he will that $E_3 > 0$ as $3 + \infty$.
Then, then exists a sequence $\{ns_3\}_{3} \in W^{1,0}(0,1)$ set.
a) $n_3 - u \in W^{1,0}(0,1)$ $\forall j \in \mathbb{N}$
b) $n_3 \longrightarrow u$ in L⁰(0,1)
 $j = u$ in L⁰(0,1)
c) lineary $\int_0^1 f\left(\frac{x}{\epsilon_3}, n_3^-(x)\right) dx \in \lim_{3 \to \infty} \int_0^1 f\left(\frac{x}{\epsilon_3}, u_3^-(x)\right) dx$.
where f, p satisfy the hypothess of the previous theorem.
Broof: Fix $\psi \in W_0^{1,0}(0,4)$ and origine that $\psi > 0$ in $(0,1)$. Thus, let
 $n_3 = u + (u_3-u) \land \psi (-\psi)$ (truncation) $\forall_3 \in \mathbb{N}$.
Where $\begin{cases} f, g = \min_{3} f, g_{3}^{2} \\ f \lor g = \max_{3} f, g_{3}^{2} \\ f \lor g = \max_{3} f, g_{3}^{2} \end{cases}$.
Note that $n_3 - u = \begin{cases} u_3 - u \\ \pm \psi \\ \vdots \end{bmatrix} (u_3 - u) \frac{1}{2} \psi + \frac{1}{2} u_3 - u \frac{1}{2} \psi$
 $u = \begin{cases} u_3 - u \\ \frac{1}{2} \psi = u_3 - u \end{bmatrix} (u_3 - u) \frac{1}{2} \psi + \frac{1}{2} u_3 - u \frac{1}{2} \psi$
 $u = \begin{cases} u_3 - u \\ \frac{1}{2} \psi = u_3 - u \end{bmatrix} (u_3 - u) \frac{1}{2} \psi + \frac{1}{2} u_3 - u \frac{1}{2} \psi$

Also (b) is satisfied. Indeed, by construction
$$\forall p \in [a, +o)$$

If $\sigma_3 - u \parallel_p$, belows like $||u_2 - u \parallel_p$, by 3 by reards.
We coulded by reasoning the reliably of (c).
Dente $E_3(x) \doteq \{x \in (o, a) : \sigma_3(x) \pm u_3(x)\}$ by the and notice that, by construction, $|E_5| \rightarrow o$ as $j \rightarrow +\infty$. Then
 $\int_0^{d} f(\frac{x}{e_3}, \sigma_3'(x)) dx = \int_0^{d} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{d} f(\frac{x}{e_3}, \sigma_3'(x)) dx$
 $\int_0^{d^*} (a_1) E_3 (a_2) = \int_0^{d} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{d} f(\frac{x}{e_3}, \sigma_3'(x)) dx$
 $\int_0^{d^*} f(\frac{x}{e_3}, \sigma_3'(x)) dx = \int_0^{d} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{d} c(a+|\sigma_3'|^2) dx$
 $\int_0^{d^*} f(\frac{x}{e_3}, \sigma_3'(x)) dx + \int_{E_3}^{d} c(a+|\sigma_3'|^2) dx$
 $\int_0^{d^*} f(\frac{x}{e_3}, \sigma_3'(x)) dx + \int_{E_3}^{d} c(a+|\sigma_3'|^2) dx$
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{E_3}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e_3}, u_3'(x)) dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e^*}, u_3'(x)) dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e^*}, u_3') dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e^*}, u_3') dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e^*}, u_3') dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx$.
 $\int_{e^*}^{e^*} f(\frac{x}{e^*}, u_3') dx + \int_{e^*}^{e^*} c(a+|\sigma_3'|^2) dx + \int_{e^*}^{e^*} c(a$

$$\begin{array}{l} \hline \begin{array}{l} \hline \textbf{STEPs} & : \mbox{ Answer that u is (pressure) affine, i.e. if we partitive the interval $[0, s] = 0$ $[0, c] = \bigcup_{k=1}^{n} [a_{k,k}, a_{k}]$, with $a_{0}=0$. $a_{n}=s$ and $a_{k}c_{n}, \forall k$, there $u(x) = m_{x} \times t q_{k}$ $\forall x \in [a_{k-s}, a_{k}]$, with $m_{n}, q_{n} \in \mathbb{R}$. Thus, $F_{kon}(u) = \int_{0}^{4} f_{kon}(u'(x)) dx = \sum_{k=1}^{n} \int_{a_{m-1}}^{a_{m}} f_{kon}(m_{k}) dx$. We aim to find a recover requese $[u_{0}^{2}]_{3}$ for u . We again proceed in tips.
A) By definition of fear, $\forall k \in [s, ..., m]$ there exists a competitor $a_{k} \in W'$, $f(o, s)$ st.
 $f_{kon}(m_{k}) = \int_{0}^{4} f(x, m_{k} + v_{k}'(s)) dx$.
b we we may assume v_{k} a special $\forall k \in \mathbb{N}$.
2) Fix K e s_{k-n}^{n} . $\forall x \in [a_{k-1}, a_{k})$ we denote $u_{3}(x) = \frac{m_{k} x + q_{k}}{u_{k}(x)}$.
b we we may assume v_{k} a special $\forall k \in \mathbb{N}$.
2) Fix K e s_{k-n}^{n} . $\forall x \in [a_{k-1}, a_{k})$ we denote $u_{3}(x) = \frac{m_{k} x + q_{k}}{u_{k}(x)}$.
b we we may assume v_{k} a special u_{k} denote $u_{3}(x) = \frac{m_{k} x + q_{k}}{u_{k}(x)}$.
c being assume v_{k} a special u_{k} denote $u_{3}(x) = \frac{m_{k} x + q_{k}}{u_{k}(x)}$.
c $u_{k}(x) = \int_{0}^{x} f(x, m_{k} + v_{k}'(x)) dx$.
b $u_{k}(x) = \int_{0}^{x} f(x, m_{k} + v_{k}'(x)) dx$.
c $u_{k}(x) = \int_{0}^{x} f(x, m_{k} + v_{k}'(x)) dx = \int_{0}^{x} f(x) + \frac{1}{(a_{k})} = \frac{1}{(a_{k}, a_{k}, a_{k})}$.
c $u_{k}(x) = \int_{0}^{x} f(x) + \frac{1}{(a_{k}, a_{k}, a_{k})} = \frac{1}{(a_{k}, m_{k} + v_{k}'(x))}$.
b $u_{k}(x) = u_{k}(x) + \frac{1}{(a_{k})} + \frac{1}{(a_{k})} = \frac{1}{(a_{k})} = \frac{1}{(a_{k})} + \frac{1}{(a_{k})} = \frac{1$$$

If we give all the picen together it may be a lack of continuity
3) For any 3 eN and ke [s, ..., m] we now define
$$R_{\mu}^{2} = E_{3} \begin{bmatrix} e_{\mu} \end{bmatrix}$$
. Its subcomp
 $0 = Q_{\mu}$
 q_{μ}
 $q_{\mu} = Q_{\mu}$
 $q_{\mu} = Q_$

2) I' limit inequality:
$$\forall u \in L^{c}(a, s) \forall u_{3} \rightarrow u$$
 (strongly) in $L^{c}(a, s)$ it helds
Localitation
$$F_{limit}(u) \in [1^{-1} \text{ Limit} F_{\xi_{3}}(u_{3}) \text{ or, aquivality,}$$
cliscue tration
$$F_{limit}(u) \in (1^{-1} \text{ Limit} F_{\xi_{3}})(u) \quad \forall u \in L^{c}(a, s).$$
[In this case we will use the first statement).
Fix use $L^{c}(a, s)$ and $\frac{1}{2}u_{3,3} \in L^{c}(a, s)$ at $u_{3} \rightarrow u$ strongly in $L^{c}(a, s)$.
We now use a localization argument. First, remined that
$$l_{kum}(\frac{1}{2}) = \lim_{T \rightarrow \infty} \min \left\{ \frac{4}{T} \int_{0}^{t} f(x, \frac{1}{2} + u^{c}(x)) dx : u \in W^{c, p}_{a}(x, y, x, +T) \right\}.$$
Note that
$$g_{x}^{*}(\frac{1}{2}) = \min \left\{ \frac{4}{T} \int_{0}^{t} f(x, \frac{1}{2} + u^{c}(x)) dx : u \in W^{c, p}_{a}(x, y, x, +T) \right\}.$$
Note that
$$limit \left\{ \frac{F_{g}}{F_{g}}(u_{3}) + u \text{ (strongly in the strongly in the strongly)} \right\}$$

$$Let in, then such that
$$\lim_{T \rightarrow \infty} f(\frac{1}{T} \int_{0}^{t} f(x, \frac{1}{2} + u^{c}(x)) dx : u \in W^{c, p}_{a}(x) + u_{a}(x) dx \text{ in the strongly)}$$

$$Let in, then such that
$$\lim_{T \rightarrow \infty} f(\frac{1}{T} \int_{0}^{t} (x, \frac{1}{2} + u^{c}(x)) dx = u \in W^{c, p}_{a}(x) + u_{a}(x) dx \text{ in the strongly)}$$

$$Let in, then such there is the substance of the substance is the substance is the substance of the substance$$$$$$

Without low of generative, by the previous lineae applied in the interval
$$\left(\frac{w}{m}, \frac{w_{es}}{m}\right)$$
, we assume that $u_{0}\left(\frac{w}{w}\right) = u\left(\frac{w}{m}\right)$ is an end $\forall k \in [0, ..., m]$.
Thue,
 $(w \text{ the endpoints of the interval})$
 $(w \text{ s}) = \lim_{n \to \infty} \frac{1}{2} \lim_{w \to \infty} \frac{1}{2}$

when $\tilde{u}_{m}(x) = z_{m}^{m}$ is the interpolation line of a in the points K M $\left(X \in \left(\frac{k}{m}, \frac{k+1}{m} \right) \right)$ / u um and un is also precewise affine. 0 1 Then limited $F_{\varepsilon_3}(u_3) \ge F_{\text{low}}(\tilde{u}_m) \xrightarrow{m \neq \infty} F_{\text{low}}(u)$ (being \tilde{u}_m strongly convergent to u in $W'^{(p)}(o, 1)$).