19.11.2024

Countermount the minimize time problem
(P) mult
$$F(u) : u \in W^{A,p}(\Omega)$$
?
We should that if pre (nflexing of the spea) and if we counter the space
with zero loundary olation $W'_{0}^{(p)}(\Omega)$, instead of the while space $W^{A,p}(\Omega)$,
then the growth coundition on if eurones the coexists of F.
Yet up then recellect all the previous counterations in the following result.
The 2st $\Omega \in \mathbb{R}^{m}$ be open and bounded, let $s < p_{2} + \infty$ and counteration
 $f: \Omega \times \mathbb{R}^{m} \longrightarrow [0, +\infty]$ satisfying
i) for e.e. $x \in \Omega$ the map $\mathbb{R}^{m} \longrightarrow [0, +\infty]$ is lower reminentations;
 $2 \longmapsto f(x, 2)$
iii) for e.e. $x \in \Omega$ the map $\mathbb{R}^{m} \longrightarrow [0, +\infty]$ is convex;
 $2 \longmapsto f(x, 2)$
iii) for e.e. $x \in \Omega$ the map $\mathbb{R}^{m} \longrightarrow [0, +\infty]$ is convex;
 $2 \longmapsto f(x, 2)$
iii) there exists $c_{4} \in \mathbb{R}^{+}$ s.t. $f(x, 2) \ge c_{4}[2^{(1)} \circ ... e. x \in \Omega \lor 2e\mathbb{R}^{m}$.
Then, problem (P) odowite orbitions.
Proof: Let $\frac{1}{2} U_{3}^{2} \le W_{0}^{(p)}(\Omega)$ be a minimizing regime for $F, i.e.$
 $\lim_{x \to \infty} F(u_{3}) = \inf_{x \to \infty} F(c_{3})^{2}$
Thus, sup $F(u_{3}) \le f(x, \nabla u_{3}) dx \ge c_{4} ||\nabla u_{3}||^{0} \lor V_{3} \in \mathbb{N}$,
that is, $\sup_{x \in \mathbb{N}} F(u_{3}) = \int_{\Omega} f(x, \nabla u_{3}) dx \ge c_{4} ||\nabla u_{3}||^{0}$
 $+\infty > F(u_{3}) = \int_{\Omega} f(x, \nabla u_{3}) dx \ge c_{4} ||\nabla u_{3}||^{0}$
that is, $\sup_{x \in \mathbb{N}} ||\nabla u_{3}||_{1}^{(x)} + \infty$.

Thinkse, as a consequence of the Poincar inequality.
Note
$$\|U_{n}\|_{(\Omega)}^{-1} + \infty \Rightarrow \{u_{n}\}, is a bounded requesce in $W_{n}^{(P}(\Omega)$
and, by reflecting $(P > 4) \exists u \in W_{n}^{(P}(\Omega)$ and $\exists \{u_{n}\}_{n} \in \{u_{n}\}_{n}$ s.t.
 $u_{n} \longrightarrow u$ workly in $W_{n}^{(P}(\Omega)$. Let $\{c_{n}, c_{n}\}_{n}$
Note that, in principle, size $W_{n}^{(P}(\Omega)$ inherts its topology from $W_{n}^{(P}(\Omega)$, then
 $u \in W_{n}^{(P}(\Omega)^{-1} ||^{n} = W_{n}^{(P}(\Omega) (u is the condidate of minimizer).$
Since $\overline{W}_{n}^{(P}(\Omega)^{-1} ||^{n} = W_{n}^{(P}(\Omega) (1 + 5 strongly closed) and $W_{n}^{(P}(\Omega)$ acadines,
then $W_{n}^{(P}(\Omega)$ is also closed in the weak topology of $W_{n}(\Omega)$ and ∞ is $W_{n}^{(P}(\Omega)$
By the previous result, $F(u) \stackrel{Plac}{\leq} R_{n}^{(Plac)} \lim_{K \to \infty} F(u_{n,k}) = \inf_{W_{n}^{(Plac)}} F.$
EX: have the following result
Th: Let $\Omega \in \mathbb{R}^{n}$ be open and bounded, such that $\Omega \cap \operatorname{Liphile}$ continues,
let $x c p c + \infty$ and convioler $F(u) = \int_{\Omega} f(x, \nabla u(x)) dx$, where f satisfy
the oscillations of the previous theorem, and let $g: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ satisfy
i) for a c $x \in \Omega$ the image $\mathbb{R} \longrightarrow \mathbb{R}$ is lower sensiontinues;
 $x \mapsto g(x,s)$
iii) there exists $c_{x} \in \mathbb{R}^{+}$ s.t. $g(x,s) \ge C \log^{1} \alpha \cdot e \cdot x \in \Omega$ to \mathbb{R}^{n} .
Thus, the following problem advects solution
 $\min_{x} \int_{\Omega} F(u) + G(u) : u \in W_{n}^{P}(\Omega)$ if use the Rellid theorem.
In what following is absolved that the sense inequality. Use the Rellid theorem
In what follow, one to be that the convecty condition on $f(x, \cdot) = e \cdot x \in \Omega$
is not only a sufficient condition to get the lower sensiontine of F , but it is
also measurapy. We first meed the following result.$$$

STEP 3.2 Cose m=4. We would be approximate the line
$$u^3 = \langle x, 2 \rangle = \frac{1}{2} \times (m \cdot 2)$$

hy means of a microstructure of period J. only depending on
the olops $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 u^1
Quark: We actually do not need to know the analytic experiment of u_3
Private $A_3 = \frac{1}{2} \times c \Omega$: $u_3'(x) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \frac{1}{2$