$\frac{1}{18}$ ii and Fatour lemme by the single state in $\frac{1}{18}$ if $\frac{1}{18}$ if $\frac{1}{202}$

Couxion now the minematicalton problem
\n(*P*)
\nWe showed that if
$$
p \times a
$$
 (intract) of the $W_0^* f(\Omega)$.)
\nWe should take a general solution, $W_0^* f(\Omega)$, instead of the constant the space
\nwith zero. Romology obtain $W_0^* f(\Omega)$, instead of the *well* space $W^{1,p}(\Omega)$,
\nBut us that method all the points the covering of F.
\n W_0 is the *n*th term of the parabola, for a *well* and counted.
\n \overline{W} : $W_0 \times R^m \rightarrow [0, +\infty]$ satisfying
\ni) $\oint_C w_0 R^m \rightarrow [0, +\infty]$ satisfy the
\n \overline{W} : $\Omega \times R^m \rightarrow [0, +\infty]$ satisfy the
\n \overline{W} : $\Omega \times R^m \rightarrow [0, +\infty]$ satisfy the
\n \overline{W} : $\Omega \times R^m \rightarrow [0, +\infty]$ for \overline{W} for $\$

Neuma: Set $g \in L^{\infty}(R)$ be $1 - parabic$ (i.e. $g(x+a) - g(x)$ $\forall x \in R$) and Qk \n
\n $\begin{cases}\n 3 & 1 \\ 3 & 1 \\ 3 & 3\n \end{cases}$ $\leq L^{\infty}(R)$ $ax \text{th of } g(x) = g(x) \text{ V } g \text{ in } R$ \n
\n $\begin{cases}\n 3 & 1 \\ 3 & 1\n \end{cases}$ $\leq L^{\infty}(R)$ \Rightarrow $\begin{cases}\n - \\ 4 \\ 0 \\ 0\n \end{cases}$ $(2x) \text{ V } g \text{ in } R$ \n
\n $\begin{cases}\n 3 & 1 \\ 4 & 1\n \end{cases}$ $(2x) \text{ V } g \text{ in } R$ \n
\n $\begin{cases}\n 3 & 1 \\ 0 & 0\n \end{cases}$ $\begin{cases}\n - \\ 0 & 0\n \end{cases}$ $\begin{cases}\n$

NB ^C ^R is dense in ^L ^R ^H as ^p to We can thenreplace yeLaR1with ^a testfunction y ^e ^c IR Let ^G lx f ^gItt dt ^V xe ^R NB ^g ^e Lo R1 ^D ^g is measurable in ^R and bounded Gis well defined Gis differentiable ^a ^e in R ^G ld girl ^g is periodic glad^x ^o ^D ^Gis ¹ periodic ^D ^Gis bounded Show that G is ^a periodic Let Ha x1 G Kx Then Ha ld ⁱ ^G ^kxl ^K ^gthxt Ir ^k ^gntxt Uke^N ^e ^e ^xER Andno legallyhide ^f ¹ Hill phlox ^I inFithiande ^s ^E ^o We are now in thepositionto prove thenext result Th Necessity ofconvexity Let ^r ^eIR beopen and boundedand let f Rx IR Io to satisfy ⁱ f in ^a Coretheodoryfunction i.e ft ²¹ is measurable ^t ER and achiefrequest f ^x is continuous ^e ^e ^x er ii ^V ^R^e Rt I ^g^r ^e ^L ^R ⁿ it ^o ^e f ^x ³ ^e grid ^a ^e ^x er ^t 2 ER Moreover considerthefunctional F W 01521 R ^U Flat fix uhlol^x If ^F is sequentially lower semicontinuous ^w ^r ^t the ^W week topology then for ^e ^e ^x er the map RM R is convex I f ^x y

$$
\frac{\sqrt{5\pi\epsilon^{2}+2}}{\sqrt{2}\pi\epsilon^{2}+4\epsilon^{2}} = \frac{1}{2}e^{2}+4\epsilon^{2}+6\epsilon^{2}+12\
$$