3) Application to elliptic PDEs: the G-couvergeur problem 05.12.2024 We mow sopply the F-courrespeare theory to functional F_{ε} that correspond to the every functionals associated with elliptic PDEs in divergence form $EX: [\text{gluu } n=1]$ $A_{\varepsilon} v = 0$ in ($\mathcal{U}(\mathfrak{a}) = \mathfrak{0}$
 $\mathcal{U}(\mathfrak{a}) = \mathfrak{0}$ where the second order operator in diverpence form A_ε is defined by $A_{\varepsilon} : \omega^{1,2}(\circ, \Lambda) \longrightarrow (\omega^{1,2}(\circ, \Lambda))$ σ + + $A_{\varepsilon}(\sigma) = -\text{div} \left(\alpha \left(\frac{x}{\varepsilon} \right) \sigma'(x) \right)$ $= -(\alpha(\frac{x}{\epsilon}) \sigma')$ for any EER+. 1 By the standard theory of PDEs (e.g. Lax-Milgram Lemme), sun minimizer of FE Je W^{1,2} (0,1), is abo the unique (up to constants) weak solution to (P), Consider the sequence of volutions $\{v_\epsilon\}$. Then, it is bounded in $W^{\epsilon}(\circ, \Delta)$, such as the requence $\frac{1}{2}a_{\epsilon}^{2}$ is bounded in $L^{2}(0,1)$, where $a_{\epsilon}(x) = a(\frac{x}{\epsilon})$.
Then they exist $x \in W^{3,2}(\epsilon,1)$ and $\overline{a} \in L^{2}(\epsilon,1)$ such that: There, there exist $N \in W^{3,2}(\circ, 4)$ and $\overline{o} \in L^2(o, 4)$ such that: 1) $\sigma_{\varepsilon} \longrightarrow \sigma$ weakly in $W^{4,2}(0,1)$ (and strongly in $L^2(0,1)$ by Rollich th.) $r = \frac{1}{2} \int \frac{dx}{dt} dt = \frac{1}{2} \int \frac{dx}{dt} dt$ 3) $a_{\varepsilon} \longrightarrow a$ weakly in $L^2(o,s)$ (weakly- \star in $L^{\infty}(o,s)$), where $\overline{a} = \int o(x)dv$ Problem: Note that, in general, a_{ε} \sim $\frac{1}{\varepsilon}$ \rightarrow $\overline{\alpha}$ \sim "weakly in $l^2(o,s)$ $\frac{1}{2}$ example: Let us provide au explicit formulation for a, os follows: let $x \mapsto \begin{cases} d & \text{if } k \neq 0, 1, 2 \neq 0, 3 \neq 1, 3 \neq 2, 4 \neq 3. \end{cases}$ $, \, \circ \, \circ \, \circ \, \circ \, \circ \, \circ$ $\begin{array}{c} \times \longleftarrow \end{array}$ $q, \beta \in \mathbb{R}$ 2^{2}
B 2^{2}

Remark	The proof of the lemma is a discrete consequence of $Loc-Hilg$ and Enc .
Let det , the definition det are given by $(0, 0)$.	10
Let det , det are the following property:	10
Let det is a convergent in the formula det is a linear function.	
Let det is a convergent in the formula det is a linear function det is a linear function.	
Let det is a linearly independent of det is a linear function, det is a linear function.	
Let det is a linearly independent, det is a linear function, det is a linear function.	
Let det is a linearly independent, det is a linearly independent, det is a linearly independent.	
Let det is a linearly independent, det is a linearly independent, det is a linearly independent, det is a linearly independent.	
Let det is a linearly equivalent to det is a linearly independent, det is a linearly independent, det is a linearly independent.	
Let det is a linearly independent, det is a linearly independent, det is a linearly independent.	
Let det is a linearly independent, det is a linearly independent, det is a linearly independent, and det is a linearly independent.	
Let det is a linearly independent, det is a linearly independent, and det is a linearly independent, and det is a linearly independent.	
Let det is a linearly independent, det is a linearly independent, and det is a linearly independent.	
Let det	

 \mathbb{L}

This lost case is much delicote. because the divergence operator does not recognize the presence of skew-symmetric motices, and we mary leave a "lack of miques" in the limit operator. Remem. The closure of the class E (SL) under the G-courageuse, also Kuonun as G-compactness, is proved with "operatorial tichniques", and in a particular case of the comparated compactment beere We now want to show how to equivalently obtain such result by 5-couvergeure of louver servicontinues quadrotic frues. Un farit note that any problem le hos a variational characterization:
En ann le R+ une deude For any le R⁺ we denote $F_{Q}: L^{2}(\Omega) \longrightarrow \mathbb{R} \cup \{*\infty\}$ and $G: L^{2}(\Omega) \longrightarrow \bigcap_{\alpha} A_{\alpha}(x) \nabla u \cdot \nabla u dx$, if $u \in H_{0}^{1}(\Omega)$
and $G: L^{2}(\Omega) \longrightarrow \mathbb{R} \cup \{ \ast \omega \}$ $u \rightarrow \int_{\Omega} \n\begin{cases} u dx \end{cases}$ Then we have the following equivalence: ue is a solution 40 u_{2} ϵ min $\Big\{F_{\epsilon}(u)-G(u) : u \in L^{2}(\Omega)\Big\}$ Q: What hoppeur il un consider the sequence of weak solutions du 2 ?

The: (Slondoue 1975) It of Fe, y be the sequence of every functionals sysociated with $\{A_a\}$, CEW. There. There exists AEE (SI) s.t. (up to rebequerces) $\{F_{a}\}\Gamma$ -couverges to F_{a} in the strong topology of $L^{2}(\Omega)$. where $F_{\infty}: L^2(\Omega) \longrightarrow \mathbb{R} \cup \{*\infty\}$ u + $\left\{\int_{\Omega} A_{\infty}(x) \nabla u \cdot \nabla u dx, \frac{1}{2} \int u \in H_{o}^{1}(\Omega) \right\}$
(to), $\frac{1}{2} \int_{\Omega} u dx$, $\frac{1}{2} \int u \in L^{2}(\Omega) \setminus H_{o}^{1}(\Omega)$ The lost goal of this notes is the following aprivalent proof of the G-compactness. by 1-couvergence. Ile: Let Ω = R^{on} bi speu sud bounded and let $\{A_{z}\}_{z}\subseteq E(\Omega)$, for fixed (positive) constants $\lambda \in \Lambda$. Then, then exists $A_{\infty} \in E(\Omega)$ s.f. $\{cA_{g}\}_{g}$ G-couverges to $c4_{\infty}$ up to subsqueures Proof : (Varietional) Given any problem r_{e} . let Fe Be the corresponding every functional. By the previous theorem. I A E E (SL) s.t. (up to subsequences) IF and I-courages to E in the strong topology of L'(SI) where Fo is defined above · By the properties of I-couvergence, since G is a "continuous perturbition" α $(u$ *in* $L^2(\Omega)$, then $\int_{R} -6\int_{a} \Gamma$ -couverges to $F_{\infty} - G$ in the strong topology of L'[D].

To conclude the short to show that the sequence
$$
\frac{1}{2}F_2-6\frac{2}{6}
$$
 is equal to the 100. The fact, by the fundamental theorem of 1-couveing, the complex equation of 1-couveing, the complex equation of 1-couveing, the complex multiplication of 100. The equation is u_1 and u_2 are u_0 and the following conditions of 100. The equation is u_1 and u_2 are u_1 and u_2