12.11.2024

⁵ Relaxation lower semicontinuous envelope In the previoussections we showedthat F F Open F F is lowersemicontinuous However thesequence ^F has always ^a t limit and we now wanttorepresentit Def Let X Txt be ^a topologicalspace and let F X R Wedefinetherelaxationof ^F orlower semicontinuousenvelope atnetthefutional Flat sup Glut G is lower semicontinuous and ^G^E ^F Rework F is lower semicontinuous the supremumpreservesthelowersemicontinuity Moreover ^F ^E ^F and ^F ^Z ^G for any ^Glowerranicontinuous ⁿ t.GE ^F Notethatthedefinitionof ^F involvesthe behaviourof ^F in the wholespace X By means ofthetopology Tx we canhoweverprovide ^a localcharacterizationof ^F Prop Let XTxt be ^a topologicalspace and let F X R Then Flat Ipw info ^F lol Prove theprevious proposition Bytheprevious proposition it is clear thefollowingresult Prop Let X Txt be ^a topological space and let F X R Then Fg F theN F Proof Since F does notdepend on Fy F Hy^e ^N then tu ^e X venial theftto ^E tut ^I ⁵ Misawalegit If III sup I1 Flat Once we move back to thestronger settingofmetricspaces the previousprosition provides another characterizationoftherelaxationof ^F in termsof sequences

Big: Set (X, d) be a matrix space and let $F: X \rightarrow \mathbb{R}$. Then
$F(u) = min \{x \rightarrow u \land x\} = F(u_3) = u_1 + u_2 \land x\} = u_1 \land x\}$
$8m^2 : B_4$ Let (x, b) is a matrix $f(x, b)$ and $f(x, b)$ is a matrix $f(x, b)$ and $f(x, b)$ are $x \rightarrow 0$ and $x \rightarrow 0$ and $x \rightarrow 0$ are $x \rightarrow 0$ and $x \rightarrow 0$ and $x \rightarrow 0$ are $x \rightarrow 0$ and $x \rightarrow 0$ and $x \rightarrow 0$ are $x \rightarrow 0$ and $x \rightarrow 0$ and $x \rightarrow 0$ are $x \rightarrow 0$ and $x \rightarrow 0$ and $x \rightarrow 0$ and $x \rightarrow 0$ and $x \rightarrow 0$

EX: Brove the two propositions above. We conclude this rection with the following application of the direct mothods in calcoson. Π : Let (X, Υ_{x}) be a topological space and let $F\colon X \longrightarrow \overline{\mathbb{R}}$ be mildly coercive $(i.e.$ there exists $K \in X$ compact, $K \neq \emptyset$ s.t. inf $F = \frac{iu}{K}F$). Then 1) there exists min $\{F(u): u \in X\}$ 2) min $F = \frac{2\pi k}{\chi}$ $\frac{\mathsf{X}}{\mathsf{I}}$ 3) $u \in \{u \in X : F(u) = min F\}$ if and only if there exists a minimizing requence for F $\{u_3\}$ \subseteq X $(i.e.$ line $F(u_3)$ in \bigtimes $F(v_4)$ such that $u_3 \rightarrow u$ in X. B roof: Let F_5 = F_5 for any JEN. Then. by previous results. $F_5 \xrightarrow{P} F$, which is lower receiveurtiers .
Then by the Fundamental Theorem of F-correspone, we get (s) and (2) and door the implication " $4 =$ " of (3). We conclude showing the reverse implication in (3) $t\cdot$ Fix \overline{u} ϵ $\overline{\zeta}$ $u\in X$: $\overline{F}(u)$ = min \overline{F} $\overline{\zeta}$. Then, by Γ convergence, there exists a recovery Nqueuce $\{u_3\} \in X$ for F such that $u_3 \rightarrow \overline{u}$ in X and fix $\lim_{\epsilon \to 0} F(u_0) = \lim_{\epsilon \to 0} F(u_0) = F(u) = \lim_{\epsilon \to 0} F(u_0) = \lim_{\$ $\begin{array}{ccc} \text{3--}4\text{+}8 & \text{$ rivergeure by subsequences $\frac{1}{\sqrt{2}}$ my The last section concerning the theoretical part is sleveted to two important Before stating and proving these results, we notice as follows. Reeverk: Let (X, γ_X) be a topological space and let $F_3: X \longrightarrow R$, je M. If $\{\overline{F}_{\alpha}\}_{\alpha}$ is a subsequence of $\{\overline{F}_{\beta}\}_{\alpha}$, there Γ - line inf $F_3 \nsubseteq \Gamma$ - line inf F_3 = Γ - line inf F_5 and Γ - line inf F_5 = Γ - line inf F_5 . Monover, if $F = \Gamma$ -line F_3 , then $\{F_{3k}\}_{k}$ Γ -converges to $F = \emptyset$ $\{J_k\}_{k}$ = M increasing.

Exopotion: (Waylwa property of P-cootropica)		
2at (X, Tx) satisfy the first axis of continuous $f(x, y)$ and let $F_3, F: X \rightarrow \mathbb{R}$, $f(x, y)$. Then, $f(x, y) = f(x)$.		
2a	2a	2a

Then any a
$$
l
$$
 of (X, Y) satisfy the second axis of continuous identity (x, z, t) and
\n l and l is a countable basis $\{0, X_0\}$. Then, every sequence $\{F_3\}$, $f_3: X \rightarrow \mathbb{R}$
\n h as a I -convergeal numbers.

\nFrom N, and consider the square.

\nSince R is compact, then then exist $\{F_3L\} = \{F_3\}$, and that
\n $\{x, y\}$ is a countable basis $(\alpha | \alpha | \alpha | x)$),
\nSince R is compact, then then exists $\{F_3L\} = \{F_3\}$, and that
\n (\ast) β is a countable unit $\{F_2L\} = \{F_3\}$, and that
\n (\ast) β is a countable constant, and $\{F_4L\} = \{F_5\}$, and that
\n (\ast) $\{F_5L\} = \{I\}$, so that $\{F_6L\} = \{F_7\}$, and that
\n (\ast) $\{F_7L\} = \{F_8L\}$, a t . β is a diagonal argument, an count that
\n $\{F_7L\} = \{F_8L\}$, a t . β is a nontrivial $\{F_9L\} = \{F_9L\}$, where α is a $\frac{1}{\sqrt{2}}\{F_9L\} = \{F_9L\}$, and
\n $F(u) = \alpha u$ and βu is a $\frac{1}{\sqrt{2}}\{F_9L\} = \{F_9L\}$, which is a $\frac{1}{\sqrt{2}}\{F_9L\}$.

\nBy the arbitrary product α such in continuous α and α is a $\frac{1}{\sqrt{2}}\{F_9L\}$, which α is a $\frac{1}{\sqrt{2}}\{F_9L\} = \{F_9L\}$, which α is a $\frac{1}{\sqrt{2}}\{F_9L$