12.11.2024

Remark: The properties stated above in the framework of motic spaces, such as the
"Fundamental Theorem of F-convergence", held in any toplogical space.
Def: Let
$$(X, T_X)$$
 be a topological space. Let $F_3: X \longrightarrow \mathbb{R}$, jet N, and
for any $u \in X$ denote $\mathcal{N}(u)$ the set of all open neighbourboods of u .
We define: $(\Gamma - lineard F_3)(u) = size linearly inf $F_5(\sigma)$
 $3 \rightarrow +\infty$ $J(u) = size linearly inf $F_5(\sigma)$.
If there exists $F: X \longrightarrow \mathbb{R}$ such that
 $(\Gamma - lineard F_3)(u) = size linearly inf $F_5(\sigma)$.
If there exists $F: X \longrightarrow \mathbb{R}$ such that
 $(\Gamma - lineard F_3)(u) = (\Gamma - lineard F_3)(u) = F(u) & u \in X,$
we say that $\{F_3\}_3$ Γ converges to $F = \Gamma - line F_3$ in X , with the topology T_X .
EX: Show that if $(X, T_X) = (X, d)$ is a metric space, then the topology T_X .
For applications it will not be easy to work with the previous definition, which
involves neighbourhoods. However, in few cores it is useful to have the difference.
Boog: $\Gamma - lineard F_3(\sigma) = X \longrightarrow \mathbb{R}$ for lower neuricontinuous.
Boog: $\Gamma - lineard F_3(\sigma) = X \longrightarrow \mathbb{R}$ are lower neuricontinuous.
Boog: $\Gamma - lineard F_3(\sigma) = X \longrightarrow \mathbb{R}$ are lower neuricontinuous.
Boog: $\Gamma - lineard F_3(\sigma) = xe if $xe f_3 = 1 \to \infty$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty)$ $U(ell(w) = 1 \to \infty) \in U$
 $U(ell(w) = 1 \to \infty) = U$
 $U(ell(w)$$$$$

6) Relaxation - lower semicontinuous envelope In the previous sections we showed that $F_3 = F(V_{3e}N) \xrightarrow{\Gamma} F = F = F$ is lower remicontenuous. However, the sequence {F} has always a I-limit, and we now want to represent it. Def: Let (X, 7x) be a topological space and let F: X ---- R. We define the relaxation of F (or lower semicontinuous envelope) at uEX the functional $\overline{F}(u) \doteq \sup_{x \in U} \{G(u) : G \text{ is lower semicontinuous and } G \leq F \}$. Remork : F is lower securicontinuous (the supremum preserves the lower securicontinuity). Moreover, $\overline{F} \leq F$ and $\overline{F} \geq G$ for any G lower remicontinuous n.t. $G \notin \overline{F}$. Note that the definition of F involves the behaviour of F in the whole space X. By means of the topology Tx we can however provide a local characterization of F. Brop: Let (X, Tx) be a topological space and let F: X -> R. Then $F(u) = \sup_{\substack{u \in \mathcal{N}(u) \\ u \in \mathcal{N}(u) \\ v \in \mathcal{U}(u)}} \inf_{\substack{u \in \mathcal{U} \\ v \in \mathcal{U}(u) \\ v \in \mathcal{U}(u)}} F(v)$ EX: Brove the previous proportion. . By the previous proposition, it is clear the following result.

 $\frac{Broof}{\Gamma}: Since F_{3} obes not depend on J (F_{3} = F \forall J \in \mathbb{N}), then \forall u \in X$ $\left(\Gamma - line inf F_{3}(u) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} line inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \sup_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3}(x) = \max_{\substack{u \in \mathcal{U}(u) \\ J \to +\infty}} inf F_{3$

· three we more back to the stronger setting of metric spaces, the previous prosition provides another characterization of the relaxation of F in terms of requences.

F(u)

Big: Let
$$(X, d)$$
 be a matric space and let $F: X \longrightarrow \mathbb{R}$. Thue
 $\overline{F}(u) = \min \left\{ \lim_{x \to +\infty} F(u_3) : u_3 \longrightarrow u_{in} X \right\}$ $\forall u \in X$.
Bood: By the previous proportion, taking $F_3 = F \forall_3 \in \mathbb{N}$, then $\forall u \in X$.
 $\overline{F}(u) = (\Gamma - \lim_{x \to +\infty} F_3)(u)^{d \oplus d} \inf_{x \to +\infty} F_1(u_3) : u_3 \longrightarrow u_{in} X \right]$
 $\overline{F_{=}}^{f = f} \inf_{x \to +\infty} F_1(u_3) : u_3 \longrightarrow u_{in} X \right]$
Hencome, by Γ -conseque, the influence is attained (at least de any measury
requeses $\{\overline{U}_3\}_3$ sotisfying (u') or (u') , and then the thris cosely follows.
The following result compares Γ -limits of requess intervalued.
 $\overline{F_3} \le G_3 \quad \forall_3 \in \mathbb{N}$. Then
 $\Gamma - \lim_{x \to +\infty} F_3 \in \Gamma - \lim_{x \to +\infty} F_3 = \Gamma - \lim_{x \to +\infty} F_3 \in \Gamma - \lim_{x \to +\infty} F_3 = \Gamma - \lim_{x \to +\infty} F_3 \in \Gamma - \lim_{x \to +\infty} F_3 = \Gamma - \lim_{x \to +\infty} F_3 \in \Gamma - \lim_{x \to +\infty} F_3 = \Gamma - \lim_{x \to +\infty}$

EX: Prove the two propositions above. We conclude this section with the following application of the direct mathods in cale son. Th: Let (X, Cx) be a topological space and let F: X - R be mildly coescive (i.e. there exists $K \subseteq X$ compact, $K \neq \emptyset$ n.t. $\inf_{X} F = \inf_{K} F$). Then 1) there exists min { F (u): UEX} 2) min F = ient F 3) $\overline{u} \in \left\{ u \in X : \overline{F}(u) = \min_{X} \overline{F} \right\}$ if and only if there exists a minimizing requerce for \overline{F} $\{ u_{3} \} \subseteq X \quad (i.e. lim_{F}(u_{3}) = iu \} \in) \text{ such that } u_{3} \longrightarrow u \text{ in } X.$ Broof: Let F = F for suy JEN. Then, by previous results, $F_{\overline{z}} \xrightarrow{\Gamma} F$, which is lower suricontinuous. Then, by the Fundamental Theorem of Γ -convegence, we get (s) and (2) and also the implication "=" of (3). We conclude showing the reverse implication in (3) F_{iX} $\overline{u} \in \{ u \in X : F(u) = min F \}$. Then, by I-convergence, there exists a recovery sequence {u_3} = X for F such that u_ in X and $\begin{array}{cccc} \lim_{X \to +\infty} F(u_{2}) \stackrel{F_{3}=F}{=} \lim_{X \to +\infty} F_{3}(u) \stackrel{(ii')}{=} F(\overline{u}) = \min_{X} F \stackrel{(2)}{=} \inf_{X} F.$ $\begin{array}{ccccc} \sum_{X \to +\infty} F_{3}(u) \stackrel{(ii')}{=} F(\overline{u}) = \min_{X} F \stackrel{(2)}{=} \inf_{X} F.$ The conclusion follows by the arbitrarines of \overline{u} . 7) I-convergence by subsequences The last section concerning the theoretical part is devoted to two important result: the "Uryshow property of I'- convergence" and a compactness theorem. Before stating and proving these results, we notice as follows. Remark: Let (X, Zx) be a topological space and let F: X - R, JEN. If $\{F_{j_k}\}_{j_k}$ is a subsequence of $\{F_{j_k}\}_{j_k}$, thus Γ-liveriuf F₂ ≤ Γ-liveriuf F_k and Γ-liveriup F₂ ≤ Γ-liveriup F₃. J→+∞ K→+∞ K→+∞ K→+∞ J→+∞ However, if F= I lieu FJ, then {FJk} I - converges to F & {Jk} K increasing.

Boportion: (Unixlow property of F-coursesua)
Let
$$(X, T_X)$$
 satisfy the first axiou of countability (e.g. metric
spaces), and let F3, F1X → R, JEN. Then
 $\{F_5\}_3$ f-coursess to F $\Rightarrow \forall \{F_{u}\}_{u} \in \{F_5\}_3 \exists \{F_{u}\}_{u} \in \{F_{u}\}_{u} + t.$
 $F_{u} \to F$ as $u \to +\infty$.
Boof: (a) Notice that for only $\{J_{u}\}_{u} \in \mathbb{N}$ increasing
 $F= \Gamma \cdot \lim_{u \to u} F_5 \leq \Gamma \cdot \lim_{u \to u} F_{u} \in \Gamma \cdot \lim_{u \to u} F_{u} \in F_{u}$.
 $F= \Gamma \cdot \lim_{u \to u} F_5 \leq \Gamma \cdot \lim_{u \to u} F_{u} \in \Gamma \cdot \lim_{u \to u} F_{u} \in F_{u}$.
 $F= \Gamma \cdot \lim_{u \to u} F_5 = \Gamma \cdot \lim_{u \to u} F_{u} \in X$ s.t.
(a) $(\Gamma \cdot \lim_{u \to u} F_5)(u) \geq F(u)$.
 $Tu the first core, there exists a sequera $\{u_i\}_{u} \in X$ s.t.
 $I_{u} = \frac{1}{2} + \frac{1}{2} +$$

Theorem: Let
$$(X, T_X)$$
 satisfy the second axion of countablety (i.e. then
exists a countable basis for T_X). Then, every require $\{F_3\}_2, F: X \rightarrow \mathbb{R}$
has a Γ -convergent subsequence.
Book: By hypethons $\exists \oplus = \frac{1}{2} \bigcup_n j_n$ a countable basis (of open sets) of T_X .
Fix me N and consider the sequence
 $\left\lfloor inf F_3(n) \right\rfloor_3 \leq \mathbb{R}$.
Since \overline{R} is compact, then there exists $\left\{F_3 \bigcup_{k=1}^{n} e_k \in \{F_3\}_2$ such that
 (k) helds \forall me N and, by a disgonal argument, we construct
 $\left\{F_{5} \bigcup_{k=1}^{n} e_k \in \{F_3\}_k$ s.t. $\lim_{k\to\infty} \inf_{n=1}^{n} F_{ne}(n)$ but
 $F(n) = neg from $\inf_{k=1}^{n} F_{2k}(n) \in \mathbb{R}$.
By the architerines of u_n we get the thesis.
 $Remodel: The two previous results can be used in confront or followers:
 $\forall \{F_3\}_3$ we extract a subsequence $\{F_3, i_k\}_k \in \{F_3\}_2$, which I can seg
 R_3 the previous therem. There is all of the theory of $\{F_3, i_k\}_k \in \{F_3\}_2$, which I can seg
 R_3 the previous therem. There is all of the theory of $\{F_3\}_2$, which I can seg
 R_3 the previous therem. There is all of the theory is the theory of $\{F_3\}_2$, $\{F_3\}_2$, E_4 the F_3 , E_5 , E_5 , E_5 .
 $\forall \{F_3\}_3$ we extract a subsequence $\{F_3, i_k\}_k \in \{F_3\}_2$, which I can seg
 R_3 the previous therem. There there alone that the Γ limit is the
same for any subsequence, then we induct Γ converge for $\{F_3\}_3$, by
the Uryphane property.
Since in applications the functioned F_5 is \mathbb{R}^4 s.t. $e_5 \rightarrow 0$, as
 $J \longrightarrow +\infty$, there $F = \Gamma$ lime F_{23} .$$