The Mittag-Leffler theorem for proper minimal surfaces and directed meromorphic curves

TJAŠA VRHOVNIK

Departamento de Geometría y Topología e Instituto de Matemáticas (IMAG), Universidad de Granada, Campus de Fuentenueva s/n, E–18071 Granada, Spain.

vrhovnik@ugr.es

Abstract Given an open Riemann surface M and a closed conical complex subvariety $A \subset \mathbb{C}^n$ $(n \geq 3)$, a holomorphic map $F : M \to \mathbb{C}^n$ is an A-immersion if its complex derivative F' on M with respect to any local holomorphic coordinate on M assumes values in $A_* = A \setminus \{0\}$. Given a closed discrete subset $E \subset M$, by a meromorphic A-immersion $M \setminus E \to \mathbb{C}^n$ we mean a holomorphic A-immersion $M \setminus E \to \mathbb{C}^n$ extending to M as a meromorphic map with effective poles at all points in E.

We aim to connect this notion to a well-known result from complex analysis, the Mittag-Leffler theorem from 1884, which states that for any closed discrete subset $E \subset \mathbb{C}^n$ and a meromorphic function f on a neighbourhood of E there exists a meromorphic function gon \mathbb{C} which is holomorphic on $\mathbb{C} \setminus E$ and the difference g - f is holomorphic at every point of E. This was extended by H. Florack in 1948 to functions on open Riemann surfaces. In 2022, A. Alarcón and F. J. López in [2] proved an analogue of the Mittag-Leffler theorem for complete conformal minimal surfaces in \mathbb{R}^n , including approximation and interpolation (see also [3, Chapter 3]). We generalize the latter to obtain a Mittag-Leffler-type theorem for proper directed immersions $M \to \mathbb{C}^n$ on any open Riemann surface M and state some consequences describing properties of minimal surfaces in \mathbb{R}^3 . This is joint work with Antonio Alarcón.

References

- A. Alarcón and F. Forstnerič. Null curves and directed immersions of open Riemann surfaces. Invent. Math., 196(3):733-771, 2014.
- [2] A. Alarcón and F. J. López. Algebraic approximation and the Mittag-Leffler theorem for minimal surfaces. Anal. PDE, 15(3):859–890, 2022.
- [3] A. Alarcón, F. Forstnerič, and F. J. López. *Minimal surfaces from a complex analytic viewpoint*. Springer Monogr. Math. Cham: Springer, 2021.
- [4] Y. Kusunoki and Y. Sainouchi. Holomorphic differentials on open Riemann surfaces. J. Math. Kyoto Univ., 11:181–194, 1971.
- [5] F. J. López. Exotic minimal surfaces. J. Geom. Anal., 24(2):988–1006, 2014.