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Abstract

Measuring the complexity of real numbers is of major importance in computer science. Consider a non-computable real number x, i.e., a real number
which cannot be stored on a computer. One can store only an approximation of x, for instance by considering a finite length bitstring representing a prefix
w of the binary expansion ω of x. For a fixed approximation error ε > 0, the required length of this bitstring, as a function of ε, depends on the algorithmic
complexity of the prefix w of the binary expansion achieving error ε. The algorithmic complexity of a binary sequence w, often referred to as Kolmogorov
complexity, is the length of the smallest binary sequence w′, for which there exists an algorithm, such that when presented with w′ as input, delivers w as
output. The algorithmic complexity of the binary expansion of real numbers has been widely studied, but the algorithmic complexity of expansions in bases
other than 2 remains poorly understood. Several papers have established an equivalence between the algorithmic complexity of the expansions in different
bases B ∈ N. Here, we study the algorithmic complexity of expansions in noninteger bases, which display a much more sophisticated behavior. This type
of expansions, often referred to as β-expansions, have been studied widely in the literature in the context of dynamical systems. We find a relation between
the algorithmic complexity of expansions in noninteger bases and the algorithmic complexity of expansions in base 2.
Notation: Aq := {0, . . . , q − 1}. A∗q, A

ω
q denote finite and infinite se-

quences with elements in Aq. l(w) is the length of w ∈ A∗q. ω1:n denotes
the n-prefix of ω ∈ Aω

q . U is a universal Turing machine. We fix x ∈ [0, 1]

and B ∈ (1,∞) throughout.

1 Expansions in base B

An expansion of x in base B is a sequence ω ∈ Aω
⌊B⌋ that satisfies

x = ω1B
−1 + ω2B

−2 + . . . + ωnB
−n + . . . =

∞∑
i=1

ωiB
−i =: 0.ωB (1)

Example: 0.7510 = 0.112 = 0.34 = 0.14/3.
•ΣB(x) := {ω ∈ Aω

⌊B⌋ : x = 0.ωB}. If B < 1+
√
5

2 , #ΣB(x) = 2χ0

[EK+90].
•gB(x) is the lexicographically maximal element of ΣB(x).

2 Algorithmic complexity

•K[w] measures the amount of information in w ∈ A∗q, according to

K[w] := min {l(p) : p ∈ {0, 1}∗, U(p) = w} . (2)

Let ω ∈ {0, 1}ω be generated randomly.

K[000000000000000000] is low, (3)
K[3.141592653589793] is low, (4)

K[ω1:10] ≃ 10, with high probability. (5)

•For ω ∈ Aω
q , let K[ω|n] := K[ω1:n]. ω ∼

ω′ ∈ A′ωq if

K[ω′|⌈n logq′(q)⌉] = K[ω|n] +O(1). (6)

Example: π ∼ 0∞ ≁ ω.
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ω = 00101001011001001001001 . . .

Figure 1: Kolmogorov complexity of initial seg-
ments of an infinite string.

3 Relationship between complexity for different B ∈ N

Let ω ∈ Aω
B, ω′ ∈ Aω

2 , s.t. 0.ωB = 0.ω′2. From [Sta02],

ω ∼ ω′, i.e. K [ω′|⌈n log2(B)⌉] = K[ω|n] +O(1). (7)

4 Relationship between complexity for different B ∈ Q

•For ω ∈ ΣB(x), (0.ω1:n)B ≤ x ≤ (0.ω1:n)B + B−n

B−1·
•For w,w′ ∈ {0, 1}m, w ̸= w′, |0.w2 − 0.w′2| ≥
2−m ⇒ knowing ω1:n, only ∝ 2mB−n expansions
for x in base 2 are possible.

•By setting m = ⌈log2(B)⌉, one has

K[ω′|⌈n log2(B)⌉] ≤ K[ω|n] +O(1). (8)
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4.1 A dynamical system to generate an expansion with
minimal complexity

{0.wB : w ∈ {0, 1}m} is very hard
to study ⇒ other proof than for (8)
needed.
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Figure 2: Distribution of values of (w1 . . . w5)1.3

•We define constructively an expansion ω of x in base B satisfying

K[ω|n] ≤ K[ω′|⌈n log2(B)⌉] +O(1), ∀ω′ s.t. 0.ω′2 = x. (9)

We generate chunks c1, c2, . . . of ω of length N upon reading of chunks
of length M1,M2, . . ., with Σn := M1 + . . . +Mn = ⌈n log2(B)⌉.
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Figure 3: Generation of chunks of β-expansion from chunks of binary expansion.

•This construction of ω relies on two sequences xn, cn, with x0 = 0, c0 = ϵ,
and xn, cn for n ≥ 1 generated according to the following procedure.

Algorithm 1 Computation of xn, cn from xn−1

1: Take wn to be the n-th chunk of ω′, of length Mn.
2: yn← xn−1 +

BNn

2Σn × (0.wn)2.
3: Take cn to be the first N bits of gB(yn).
4: xn← xn−1 − B−N(0.cn)B.

Finally, define ω = c1c2c3 . . ..

4.2 Final relationship
Let ω ∈ Aω

⌊B⌋ be defined as above, ω′ ∈ Aω
2 , s.t. 0.ωB = 0.ω′2.

K[ω′|⌈n log2(B)⌉] = K[ω|n] +O(1). (10)

5 Relationship between complexity for different B ∈ (1,∞)

•(7) is extended to computable B ∈ (1,∞),
• extension to all (including noncomputable) B ∈ (1,∞):

|K[ω′|⌈n log2(B)⌉]−K[ω|n]| ≤ K[g2(β)|n] +O(1). (11)

6 Applications

•The complexity of sequences generated by the robust A/D conversion
algorithm in [Dau+06] can be studied.

•The hierarchy of computational power of RNNs established in [BGS97],
based on complexity of the binary expansions of the weights, can be
generalized to any representation base.
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