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Abstract

Measuring the complexity of real numbers is of major importance in computer science. Consider a non-computable real number x, i.e., a real number

which cannot be stored on a computer. One can store only an approximation of x, for instance by considering a finite length bitstring representing a prefix

w of the binary expansion w of x. For a fixed approximation error € > 0, the rec

uired length of this bitstring, as a function of €, depends on the algorithmic

complexity of the prefix w of the binary expansion achieving error €. The algorithmic complexity of a binary sequence w, often referred to as Kolmogorov

complexity, is the length of the smallest binary sequence w’, for which there exists an algorithm, such that when presented with w” as input, delivers w as

output. The algorithmic complexity of the binary expansion of real numbers has been widely studied, but the algorithmic complexity of expansions in bases

other than 2 remains poorly understood. Several papers have established an equivalence between the algorithmic complexity of the expansions in different

bases B € N. Here, we study the algorithmic complexity of expansions in noni

nteger bases, which display a much more sophisticated behavior. This type

of expansions, often referred to as G-expansions, have been studied widely in the literature in the context of dynamical systems. We find a relation between

the algorithmic complexity of expansions in noninteger bases and the algorithmic complexity of expansions in base 2.

Notation: A, := {0,...,q —1}. A’ A denote finite and infinite se-
quences with elements in A,. [(w) is the length of w € A?. wr., denotes
the n-prefix of w € A¢. U is a universal Turing machine. We fix z € [0, 1]

4.1 A dynamical system to generate an expansion with

minimal complexity

and B € (1,00) throughout. {0.wp : w € {0,1}™} is very hard ; B VR TR
to study = other proof than for (8) ! 1
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An expansion of x in base B is a sequence w &€ A‘[’B | that satisfies

r=wB ' +wB .. tw,B "+, = ZwiB_i =: 0.wp (1)
i=1

Eixample: 0.7519 = 0.115 = 0.34 = 0.1ys.

+ Xp(z) = {w € A% 1z = Owpt. I B < HT\/S, #Yip(x) = 2%
EK+90].

» gp(x) is the lexicographically maximal element of X p(x).

2 Algorithmic complexity e T

» K|w] measures the amount of information in w € Ay, according to

« We define constructively an expansion w of x in base B satistying

Klwln] < K[w'|[nlogy(B)]] + O(1), V' s.t. 0.wy=z.  (9)

We generate chunks ¢y, co, ... of w of length NV upon reading of chunks
of length My, My, ..., with ¥, .= My + ...+ M, = [nlog,(B)]|.

, My, My Ms My Ms Mg M; Mg Mg My My
w' = 01001]0001|111]1001|000|1101]010]|0000]001|1000]011]. ..

\

w = 000100|101000|001000{101000]100000[{101000|100000|100000|100000{010001]000010] . . .
N N N N N N N N N N N

Figure 3: Generation of chunks of #-expansion from chunks of binary expansion.

his construction of w relies on two sequences z,,, ¢,,, with £y = 0, ¢y = €,

and x,, ¢, for n > 1 generated according to the following procedure.

Algorithm 1 Computation of x,,, ¢, from x,,_;

Klw] :=min{l(p): p € {0,1}",U(p) = w}. (2) . Take w,, to be the n-th chunk of W', of length M,,.
2 Yy, & Tyl fg;ff X (0.wy,)o.

Let w € {0, 1} be generated randomly. s Take ¢, to be the first N bits of gg(y,).

K'1000000000000000000] is low,

i Ty 4 Tp_1 — BV (0.¢,)B.

(3)
K[3.141592653580793] is low, (4)
Kwi.19| = 10, with high probability. (5)

Let
» For w € Ay, let Klwin| = Klwiy,). w ~

Finally, define w = cicoc3. . ..

4.2 Final relationship

w € Atp| be defined as above, w' € A3, s.t. 0.wp = 0.w;.

W' E A;‘” if

|

K[w'|[nlog,(B)]] = Klw|n] + O(L). (10) |

Kw'|[nlog,(q)]] = Klw|n] + O(1). (6)

5

Example: m ~ 0% ¢ w. w =[00101001011001001001001 . . .

Figure 1: Kolmogorov complexity of initial seg-

Relationship between complexity for different B € (1, co)

« (7) is extended to computable B € (1, 0o),

ments of an infinite string » extension to all (including noncomputable) B € (1, c0):

3 Relationship between complexity for different B € N {

K[| [nlogy(B)]] — Klw|n]| < K[ga(8)|n] + O(1). (1) ]

Let w e A%, W' € AY, s.t. 0.wp = 0.ws. From [Sta02], 6 Applications
w~ W' de Kw|[nlogy(B)]] = Klw|n] + O(1). (7)  The complexity of sequences generated by the robust A/D conversion
algorithm in [Dau+06| can be studied.
4 Relationship between complexity for difterent 5 € Q e The hierarchy of computational power of RNNs established in |BGS97],
" based on complexity of the binary expansions of the weights, can be

» Forw € ¥p(2), O.wia)p <2 < (Owin)p+5 17
« For w,w’ € {0,1}"™, w # W', |0.wy — 0.wh| > \

ceneralized to any representation base.
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