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There are plenty of methods known to be useful for variable selection in a
linear regression setup. In particular, there has been a battle between ℓ0 and
ℓ1 methods in the literature, and a couple of bright representatives of these
approaches are the best subset selection and the Lasso.

The best subset problem is known to be NP-hard, see Natarajan (1995),
whereas the Lasso solves a convex optimization problem, and thus should be
easier to compute in general. Even though Hastie et al. (2017) claim that neither
method dominates the other with best subset selection performing generally
better in high signal-to-noise ratio regimes and the Lasso performing better
otherwise, the Lasso is known to fail in selecting the active subset of variables
with probability at least 1/2 if a so-called mutual incoherence condition does not
hold, see Wainwright (2009b). More importantly, there exist nearly isotropic
design matrices which violate mutual incoherence, see Wainwright (2009a), and
thus the Lasso does not recover the active set with non-negligible probability in
these cases.

So, the interest for ℓ0 methods is natural even though they may be compu-
tationally demanding. In particular, Wainwright (2009a) analyses an “optimal
decoder” over all subsets of covariates of size s – the size of the active set – and
shows that it can succeed in terms of variable selection even when the Lasso
fails. It becomes even more exciting in the light of the result from Bertsimas
et al. (2016) which shows a way to state the best subset problem as a mixed
integer optimization problem for which there exist solvers like Gurobi. This
advancement shrinks the boundaries of the best subset problem instances which
were thought to be practically unsolvable.

We introduce a two step Projected-L0 method for variable selection which is
supposed to be less computationally demanding than the optimal decoder from
Wainwright (2009a) which we refer to as Exact-L0. At the first stage of the
algorithm, a winner is chosen among subsets of the same size according to a
projected ℓ0 criterion, thus leaving at most min{n, d} subsets for consideration,
where n is the number of observations and d is the total number of variables.

1



At the second stage, an exact ℓ0 criterion with a penalty is used on the pre-
selected subsets. The projected ℓ0 criterion used to select the best model for
each sensible size is just a mean squared error taken at a sub-vector of a pre-
computed global estimator. The performance of the algorithm depends on the
properties of the global estimator. For example, one can run the Lasso over all
the covariates available, and use it as the global estimator, which makes sense
when Lasso does not concentrate on the active set right away. In this case, the
Projected-L0 can refine the result obtained via the Lasso.

Considering the subsets of size s, we show that Projected-L0 with the Lasso
global estimator consistently estimates the active set of covariates even when the
Lasso fails, i.e. when mutual incoherence does not hold. We show that the type
1 error probability of the Projected-L0 decays exponentially in n for all n ≥ n0,
where n0 is a sufficient sample size. We also compare the error probability
to the one of Exact-L0 and identify the loss occurring due to approximation.
Moreover, we show how each tournament among subsets of the same size at
the pre-selection stage can be formulated as a binary quadratic problem with a
single linear constraint.
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