EMPIRICAL APPROXIMATION OF THE GAUSSIAN DISTRIBUTION IN \mathbb{R}^d

DANIEL BARTL AND SHAHAR MENDELSON

ABSTRACT. Let G_1, \ldots, G_m be independent copies of the standard gaussian random vector in \mathbb{R}^d . We show that there is an absolute constant c such that for any $A \subset S^{d-1}$, with probability at least $1 - 2 \exp(-c\Delta m)$, for every $t \in \mathbb{R}$,

$$\sup_{x \in A} \left| \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{\{\langle G_i, x \rangle \le t\}} - \mathbb{P}(\langle G, x \rangle \le t) \right| \le \Delta + \sigma(t) \sqrt{\Delta}.$$

Here $\sigma(t)$ is the variance of $1_{\{\langle G,x\rangle \leq t\}}$ and $\Delta \geq \Delta_0$, where Δ_0 is determined by an unexpected complexity parameter of A that captures the set's geometry (Talagrand's γ_1 functional). The bound, the probability estimate, and the value of Δ_0 are all (almost) optimal.

We use this fact to show that if $\Gamma = \sum_{i=1}^{m} \langle G_i, x \rangle e_i$ is the random matrix that has G_1, \ldots, G_m as its rows, then the structure of $\Gamma(A) = \{\Gamma x : x \in A\}$ is far more rigid and well-prescribed than was previously expected.

UNIVERSITY OF VIENNA, FACULTY OF MATHEMATICS Email address: daniel.bartl@univie.ac.at

The Australian National University, Centre for Mathematics and its Applications and University of Warwick, Department of Statistics

Email address: shahar.mendelson@anu.edu.au

Date: March 11, 2024.

Key words and phrases. Empirical distribution, Dvoretzky-Kiefer-Wolfowitz inequality, Wasserstein distance, random matrices, generic chaining.