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What kinds of data?

Shapes
• 1D: curves (in R

2 or R3, say)
• 2D: photographs
• 3D: MRI, DTI, SPECT, PET, CAT, integrated photo

– cricket sclerites
– brain arteries
– lung airways
– fiber tracts

• (2+1)D: video (.mp4, .mov, ...)
• 4D: fMRI, or any time series of spatial 3D
• arbitrary D: abstract geometric structures from data

– any bunch of isolated points in R
n (!), especially for n ≫ 0

– any reasonable probability distribution

Networks
• neurological
• metabolic
• regulatory (genetic)
• phylogenetic
• physical: road maps, plant roots, neuronal (dendritic), . . .
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:
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A. apoplanos

courtesy Elen Oneal
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Brain arteries

[Bullitt and Aylward, 2002]
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Lung airways (COPD study)

[Belchi, Pirashvili, Conway, Bennett, Djukanovic, Brodzki 2018]
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Lung vessels (CDH study)

courtesy Sean McLean
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Streamlines from Diffusion Tensor Imaging

courtesy Zhengwu Zhang
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fMRI

courtesy Nicole Lazar
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Amphiacusta phylogeny
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q .

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module
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Example: expanding balls
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Example: expanding balls

dim(H0) = 26
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Example: expanding balls

dim(H0) = 21
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Example: expanding balls

dim(H0) = 12
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Example: expanding balls

dim(H0) = 6
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Example: expanding balls

dim(H0) = 2
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Example: expanding balls

dim(H0) = 1 dim(H1) = 2
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Example: expanding balls

dim(H0) = 1 dim(H1) = 3
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module
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13



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Fruit fly wings

spline

13



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Biological background

What generates topological novelty?
[Houle, et al.]: selecting for certain continuous wing vein deformations yields

• skew toward more oddly shaped wings, but also
• much higher rate of topological novelty

Hypothesis. Topological novelty arises when directional selection pushes
continuous variation in a developmental program beyond a certain threshold.

Test the hypothesis
• “plot” wings in “form space”
• determine whether topological variants lie “in the direction of” continuous
shape selected for, and at the extreme in that direction

Goal. Statistical analysis encompassing topological vein variation, giving
appropriate weight to new singular points in addition to varying shape

• compare phenotypic distance to genotypic distance; needs
• metric specifying distance between topologically distinct wings

To proceed. Statistics with fly wings as data objects  statistics with
multiparameter persistence diagrams as data objects

Need. Data structures, algorithms, theoretical guarantees
14
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Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set
• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2

15
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R
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Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν
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Topology of probability distributions

images from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,

Annals of Statistics 42 (2014), no. 6, 2301–2339.

17



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

16’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

16’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

16’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

16’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Topology of probability distributions

images from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,

Annals of Statistics 42 (2014), no. 6, 2301–2339.

17’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Topology of probability distributions

images from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,

Annals of Statistics 42 (2014), no. 6, 2301–2339.

17’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

16’’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

16’’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

16’’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

16’’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.

Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ
• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =

∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{
x ∈ M | F (x) ≥ 1/s

}
.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{
Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}
⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(
Br (µ)rd s

)
, an invariant of µ

algebra, geometry, combinatorics
︸ ︷︷ ︸

of H rs
∗ (ν) ↔ statistics of ν

presentation, primary decomposition, finite encoding
16’’



Data Persistent homology Ordinary persistence Multiple parameters: fly wings Multiple parameters: probability Multigraded algebra History

Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module
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Multigradings

Def. A polynomial in n variables over a field k is a (finite) linear combination

p(x1, . . . , xn) =
∑

a∈Nn

cax
a with x

a = xa11 · · · xann .

The set of these is the polynomial ring S = k[x] = k[x1, . . . , xn] = k[Nn].

Def. An affine semigroup is a nonnegative span Q = N{a1, . . . , ad} ⊆ Z
n.

It has affine semigroup ring k[Q] =
⊕

a∈Q k{xa}.

Def. A multigraded module over k[Q] is

M =
⊕

b∈Zn

Mb with action x
aMb ⊆ Ma+b.

Examples
1. k[Q] itself

2. monomial ideal I ⊆ k[Q]

3. quotient k[Q]/I

18
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Polynomials with real exponents

Def. A real-exponent polynomial in n variables over k is a linear combination

p(x1, . . . , xn) =
∑

a∈Rn
+

cax
a with x

a = xa11 · · · xann .

The set of these is the real-exponent polynomial ring k[Rn
+], with xaxb = xa+b.

Example. (x
√
3 + yπ)(xy2 − z) = x1+

√
3y2 + xy2+π − x

√
3z − yπz

Def. A multigraded module over k[Rn
+] is

M =
⊕

b∈Rn

Mb with action x
aMb ⊆ Ma+b.

Remark. Real-exponent polynomials behave poorly.
1. I = 〈xa11 , . . . , xann | ai > 0 ∀ i 〉 = m = maximal monomial ideal

• countably generated
• no minimal generating set

2. I = 〈xa | a1 + · · ·+ an = 1 and ai ≥ 0 ∀ i 〉
• uncountably generated
• unique minimal monomial generating set

In k[x]: all ideals finitely generated.
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History of persistent homology

Ordinary persistence
• traces back to [Morse 1940s]

• bar codes [Abeasis–Del Fra 1980], rediscovered many times
• formally defined [Frosini, Landi 1999], [Robins 1999]

• efficient computation [Edelsbrunner, Letscher, Zomorodian 2002]

• applications [too many to list; a few early ones, but most roughly 2013– ]

Multiparameter persistence
• introduced [Carlsson, Zomorodian 2009]

• algorithms, presentations, visualizations, notions of noise, distance, . . .
[Bubenik, Carlsson, Chachólski, Lesnick, Scolamiero, Vaccarino, Wright, Zomorodian,. . . ]

+ usually assume finitely presented, even if over Rn

Essentially equivalent
• representation of Q [Nazarova–Roiter 1972]

• functor from Q to the category of vector spaces (e.g., [Curry 2019])

• vector-space valued sheaf on Q (e.g., [Yuzvinsky 1987], [Yanagawa 2001], [Curry 2014])

• representation of incidence algebra of Q [Doubilet–Rota–Stanley 1972]

• module over directed acyclic graph Q [Chambers–Letscher 2018]

• representation of quiver Q with (commutative) relations (e.g., [Oudot 2015])

• module over path algebra of Q modulo transitivity ideal (e.g., [Oudot 2015])
20
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Where are we going?

II. Finiteness conditions
• tame
• finitely encoded

III. Presentation and resolution
• generators and cogenerators
• presentation: free, injective, upset, downset, fringe
• resolution: free, injective, upset, downset
• tameness criteria: syzygy theorem

IV. Data structures: monomial matrices
• Hom sets
• proof of tameness criteria

V. Measures of size and distances between persistence modules
• rank and Hilbert function
• bottleneck and interleaving distances

VI. Decomposition
• transience and persistence along faces
• coprimary elements and modules
• primary decomposition

21
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