Extendable t-structure and finitistic dimension of small triangulated categories

Junhua Zheng

(joint work with R. Biswas, H. X. Chen, K. M. Rahul, and C. J. Parker)

Abstract

A good metric $\mathcal{M} = \{\mathcal{M}_n\}_{\mathbb{N}}$ on a triangulated category (\mathcal{S}, Σ) is a sequence of additive extension-closed subcategories such that $\Sigma^i \mathcal{M}_{n+1} \subseteq \mathcal{M}_n \subseteq \mathcal{S}$, for all $n \in \mathbb{N}$ and $i \in \{-1, 0, 1\}$. For \mathcal{S} small, Neeman has recently constructed, for any good metric \mathcal{M} on \mathcal{S} , a new small triangulated category $\mathfrak{S}_{\mathcal{M}}(\mathcal{S})$, called the \mathcal{M} -completion of \mathcal{S} , as a full subcategory of Mod- $\mathcal{S} := [\mathcal{S}^{\mathrm{op}}, \mathrm{Ab}]$.

After extending the assignment $\mathcal{S} \mapsto \mathfrak{S}_{\mathcal{M}}(\mathcal{S})$ to a map sending each subcategory $\mathcal{X} \subseteq \mathcal{S}$ to a suitable $\mathfrak{S}_{\mathcal{M}}(\mathcal{X}) \subseteq \mathfrak{S}_{\mathcal{M}}(\mathcal{S})$, we isolate a class of *t*-structures in \mathfrak{S} , called \mathcal{M} -extendable, via a natural compatibility condition with \mathcal{M} . For any \mathcal{M} -extendable *t*-structure $\mathfrak{t} = (\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 1})$ in \mathcal{S} , one gets a new *t*-structure $\mathfrak{S}_{\mathcal{M}}(\mathfrak{t}) := (\mathfrak{S}_{\mathcal{M}}(\mathcal{D}^{\leq 0}), \mathfrak{S}_{\mathcal{M}}(\mathcal{D}^{\geq 1}))$ in $\mathfrak{S}_{\mathcal{M}}(\mathcal{S})$, whose heart is equivalent to that of \mathfrak{t} . Moreover, $\mathfrak{S}_{\mathcal{M}}(\mathfrak{t})$ is bounded above, if so is \mathfrak{t} .

In the second part of the talk, after recalling a recent construction of Neeman that associates to any object $G \in \mathcal{S}$ a suitable good metric \mathcal{M}_G , we will discuss a new notion of (local) **finitistic dimension** fin.dim (\mathcal{T}, H) of any small triangulated category \mathcal{T} at one of its objects $H \in \mathcal{T}$, including a comparison with previous notions of dimension in the triangulated context. An important feature of this new invariant is the following: for any object G in a small triangulated category \mathcal{S} , the condition fin.dim $(\mathcal{S}^{\text{op}}, G) < \infty$ forces all bounded *t*-structure in \mathcal{S} to be \mathcal{M}_G -extendable. As a consequence, we will verify that the condition fin.dim $(\mathcal{S}^{\text{op}}, G) < \infty$ (for some $G \in \mathcal{S}$) forces the following dichotomy: either in \mathcal{S} there are no bounded *t*-structures at all or, when at least one such *t*-structure exits, all the others have to be equivalent to (i.e., at finite distance from) it.

JUNHUA ZHENG, UNIVERSITY OF STUTTGART E-mail address: Zheng.Junhua@mathematik.uni-stuttgart.de.