Hypatia Graduate School 2024 Basics on methods from computational ALGEBRA

Alicia Dickenstein

Departamento de Matemática, FCEN, Universidad de Buenos Aires, and Instituto de Matemática Luis A. Santaló, UBA-CONICET

CRM, June 4, 2024

OUR GOAL FOR THIS CLASS:

Present basic computational tools to deal with polynomials.

Our setting

- (Bio)chemical reaction networks define systems of ordinary differential equations with (in general, unknown) parameters
- We will assume: Mass Action Kinetics (MAK). Then, the associated system of differential equations in an autonomous polynomial dynamical system $\dot{x}=f(x)$ in many variables.
- We will present a super quick introduction to Gr'obner bases and elimination of variables.
- We will also recall Descartes rule of signs and Sturm theorem about real roots of univariate polynomial with real coefficients.

Our setting

- (Bio)chemical reaction networks define systems of ordinary differential equations with (in general, unknown) parameters
- We will assume: Mass Action Kinetics (MAK). Then, the associated system of differential equations in an autonomous polynomial dynamical system $\dot{x}=f(x)$ in many variables.
- We will present a super quick introduction to Gr'obner bases and elimination of variables.
- We will also recall Descartes rule of signs and Sturm theorem about real roots of univariate polynomial with real coefficients.

Our setting

- (Bio)chemical reaction networks define systems of ordinary differential equations with (in general, unknown) parameters
- We will assume: Mass Action Kinetics (MAK). Then, the associated system of differential equations in an autonomous polynomial dynamical system $\dot{x}=f(x)$ in many variables.
- We will present a super quick introduction to Gr'obner bases and elimination of variables.
- We will also recall Descartes rule of signs and Sturm theorem about real roots of univariate polynomial with real coefficients.

Our setting

- (Bio)chemical reaction networks define systems of ordinary differential equations with (in general, unknown) parameters
- We will assume: Mass Action Kinetics (MAK). Then, the associated system of differential equations in an autonomous polynomial dynamical system $\dot{x}=f(x)$ in many variables.
- We will present a super quick introduction to Gr'obner bases and elimination of variables.
- We will also recall Descartes rule of signs and Sturm theorem about real roots of univariate polynomial with real coefficients.

DEALING WITH POLYNOMIALS IN SEVERAL VARIABLES

A good reference is the book Ideals, varieties and algorithms, by Cox, Little and O'Shea.

Definition: A term order \prec is a total order on the monomials $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ (or on their exponents $\alpha \in \mathbb{Z}_{\geq 0}^{n}$) such that if $x^{\alpha} \prec x^{\beta}$, for any γ we have that $x^{\alpha+\gamma} \prec x^{\beta+\gamma}$ and $1 \prec x^{\alpha}$, for any α.
For instance, we can consider a lexicographic order (associated with an order of the variables), a degree-lexicographic order, the reverse degree-lexicographic order, orders given by weights, etc.

The polynomial ideal I_{f} generated by a finite number of polynomials $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ is given by all the linear combinations $\sum_{i=1}^{s} g_{i} f_{i}$ with g_{1}, \ldots, g_{s} polynomials in $k\left[x_{1}, \ldots, x_{s}\right]$. All polynomial ideals are of this form. A Gröbner basis (GB) of I_{f} associated with a given term order \prec is a system of generators of I_{f} with good properties.

An EXAMPLE

- We compute a GB of the ideal generated by $f_{1}=x^{2}, f_{2}=x-y^{2}$ w.r. to the lexicographic order with $y \prec x$.
- $f_{3}=S\left(f_{1}, f_{2}\right)=f_{1}-x f_{2}=$ $x^{2}-x^{2}+x y^{2}=x y^{2}$.
- $S\left(f_{1}, f_{3}\right)=0$ (monomials).
- $f_{4}=S\left(f_{2}, f_{3}\right)=y^{2} f_{2}-f_{3}=$ $y^{2} x-y^{4}-x y^{2}=-y^{4}$.
- All further S-polynomials are 0 . A GB is given by $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$, but in fact as the respective leading terms are $x^{2}, x, x y^{2}, y^{4}$, also $\left\{f_{2}, f_{4}\right\}=\left\{x-y^{2}, y^{4}\right\}$ is a
- As the zero set of f_{1} and f_{2} (and of all the polynomials in $\left.I_{f}\right)$ is the origin $(0,0)$ then, as y vanishes there, Hilbert Nullstellensatz asserts that there is a power of y that lies in the ideal, and we found such a power (the minimal one).
- If we take the lexicographic order with $x \prec y$, the leading terms are
$f_{1}=x^{2}, f_{2}=x-y^{2}$, which are coprime, and thus they are already a GB of I_{f} for

An EXAMPLE

- We compute a GB of the ideal generated by $f_{1}=x^{2}, f_{2}=x-y^{2}$ w.r. to the lexicographic order with $y \prec x$.
- $f_{3}=S\left(f_{1}, f_{2}\right)=f_{1}-x f_{2}=$ $x^{2}-x^{2}+x y^{2}=x y^{2}$.
- $S\left(f_{1}, f_{3}\right)=0$ (monomials).
- $f_{4}=S\left(f_{2}, f_{3}\right)=y^{2} f_{2}-f_{3}=$ $y^{2} x-y^{4}-x y^{2}=-y^{4}$.
- All further S-polynomials are 0 . A GB is given by $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$, but in fact as the respective leading terms are $x^{2}, x, x y^{2}, y^{4}$, also $\left\{f_{2}, f_{4}\right\}=\left\{x-y^{2}, y^{4}\right\}$ is a
- As the zero set of f_{1} and f_{2} (and of all the polynomials in $\left.I_{f}\right)$ is the origin $(0,0)$ then, as y vanishes there, Hilbert Nullstellensatz asserts that there is a power of y that lies in the ideal, and we found such a power (the minimal one).

An EXAMPLE

- We compute a GB of the ideal generated by $f_{1}=x^{2}, f_{2}=x-y^{2}$ w.r. to the lexicographic order with $y \prec x$.
- $f_{3}=S\left(f_{1}, f_{2}\right)=f_{1}-x f_{2}=$ $x^{2}-x^{2}+x y^{2}=x y^{2}$.
- $S\left(f_{1}, f_{3}\right)=0$ (monomials).
- $f_{4}=S\left(f_{2}, f_{3}\right)=y^{2} f_{2}-f_{3}=$ $y^{2} x-y^{4}-x y^{2}=-y^{4}$.
- All further S-polynomials are 0 . A GB is given by $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$, but in fact as the respective leading terms are $x^{2}, x, x y^{2}, y^{4}$, also

An EXAMPLE

- We compute a GB of the ideal generated by $f_{1}=x^{2}, f_{2}=x-y^{2}$ w.r. to the lexicographic order with $y \prec x$.
- $f_{3}=S\left(f_{1}, f_{2}\right)=f_{1}-x f_{2}=$ $x^{2}-x^{2}+x y^{2}=x y^{2}$.
- $S\left(f_{1}, f_{3}\right)=0$ (monomials).
- $f_{4}=S\left(f_{2}, f_{3}\right)=y^{2} f_{2}-f_{3}=$ $y^{2} x-y^{4}-x y^{2}=-y^{4}$.

An EXAMPLE

- We compute a GB of the ideal generated by $f_{1}=x^{2}, f_{2}=x-y^{2}$ w.r. to the lexicographic order with $y \prec x$.
- $f_{3}=S\left(f_{1}, f_{2}\right)=f_{1}-x f_{2}=$ $x^{2}-x^{2}+x y^{2}=x y^{2}$.
- $S\left(f_{1}, f_{3}\right)=0$ (monomials).
- $f_{4}=S\left(f_{2}, f_{3}\right)=y^{2} f_{2}-f_{3}=$ $y^{2} x-y^{4}-x y^{2}=-y^{4}$.
- All further S-polynomials are 0 . A GB is given by $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$, but in fact as the respective leading terms are $x^{2}, x, x y^{2}, y^{4}$, also $\left\{f_{2}, f_{4}\right\}=\left\{x-y^{2}, y^{4}\right\}$ is a (reduced) GB of I_{f}.
- We compute a GB of the ideal generated by $f_{1}=x^{2}, f_{2}=x-y^{2}$ w.r. to the lexicographic order with $y \prec x$.
- $f_{3}=S\left(f_{1}, f_{2}\right)=f_{1}-x f_{2}=$ $x^{2}-x^{2}+x y^{2}=x y^{2}$.
- $S\left(f_{1}, f_{3}\right)=0$ (monomials).
- $f_{4}=S\left(f_{2}, f_{3}\right)=y^{2} f_{2}-f_{3}=$ $y^{2} x-y^{4}-x y^{2}=-y^{4}$.
- All further S-polynomials are 0 . A GB is given by $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$, but in fact as the respective leading terms are $x^{2}, x, x y^{2}, y^{4}$, also $\left\{f_{2}, f_{4}\right\}=\left\{x-y^{2}, y^{4}\right\}$ is a (reduced) GB of I_{f}.

An EXAMPLE

- We compute a GB of the ideal generated by $f_{1}=x^{2}, f_{2}=x-y^{2}$ w.r. to the lexicographic order with $y \prec x$.
- $f_{3}=S\left(f_{1}, f_{2}\right)=f_{1}-x f_{2}=$ $x^{2}-x^{2}+x y^{2}=x y^{2}$.
- $S\left(f_{1}, f_{3}\right)=0$ (monomials).
- $f_{4}=S\left(f_{2}, f_{3}\right)=y^{2} f_{2}-f_{3}=$ $y^{2} x-y^{4}-x y^{2}=-y^{4}$.
- All further S-polynomials are 0 . A GB is given by $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$, but in fact as the respective leading terms are $x^{2}, x, x y^{2}, y^{4}$, also $\left\{f_{2}, f_{4}\right\}=\left\{x-y^{2}, y^{4}\right\}$ is a (reduced) GB of I_{f}.
- As the zero set of f_{1} and f_{2} (and of all the polynomials in I_{f}) is the origin $(0,0)$ then, as y vanishes there, Hilbert Nullstellensatz asserts that there is a power of y that lies in the ideal, and we found such a power (the minimal one).
- If we take the lexicographic order with $x \prec y$, the leading terms are
$f_{1}=x^{2}, f_{2}=x-y^{2}$, which are coprime, and thus they are already a GB of I_{f} for this other term order.

Some comments

- For a linear system, lexicographic Gröbner basis = Gauss elimination.
- We can use GB computations to find all linear relations (with constant coefficients, not polynomial coefficients). Problem: How?
- In the previous example $y^{4}=-\left(x+y^{2}\right)\left(x-y^{2}\right)+1 x^{2}$ but it cannot be obtained only with constant coefficients, we need polynomial coefficients. How can we know this?
- GB's are implemented in all CAS $=$ Computer algebra systems (e.g. Macaulay2, Singular, Sage, etc. (free) or Maple, Mathematica, etc. (commercial)) and perform elimination of variables (in general, not computing a lexicographic GB because the computational complexity is high). There are many improvements in the original algorithm (now they even use AI to decide what reductions to make).

ELimination of variables

Elimination of variables is not as simple over the polynomial ring as the triangulation of linear systems
Take $f_{1}=x^{2}+y+z-1, f_{2}=y^{2}+x+z-1, f_{3}=z^{2}+x+y-1$ in $k[x, y, z]$. We would like to triangulate the system. But this is the answer we can get (a GB for the lex order $z \prec y \prec x$:

$$
\begin{gathered}
p=z^{6}-4 z^{4}+4 z^{3}-z^{2}, z^{4}+2 y z^{2}-z^{2}, \\
y^{2}-z^{2}-y+z, z^{2}+x+y-1 .
\end{gathered}
$$

This ideal has a finite number of zeros in \mathbb{C}^{n}. Do you see why?

However, the ideal is not radical: there are polynomials vanishing on the common zeros but not in the ideal.

Shape LEmma

Assume $I_{f} \subset k\left[x_{1}, \ldots, x_{n}\right]$ (k any field contained in \mathbb{C}) has a finite number of complex solutions $V\left(I_{f}\right)$ and it is radical. Assume also that x_{1} separates points of $V\left(I_{f}\right)$, that is, the first coordinates of all the points in $V\left(I_{f}\right)$ are all different. Then, a reduced lexicographic GB of I_{f} where x_{1} is the smallest variable has the form:

$$
G=\left\{g_{1}\left(x_{1}\right), x_{2}-g_{2}\left(x_{1}\right), \ldots, x_{n}-g_{n}\left(x_{n}\right),\right.
$$

with $\operatorname{deg}\left(g_{1}\right) \leq \# V\left(I_{f}\right)$, and for $i>1 \operatorname{deg}\left(g_{i}\right) \leq \# V\left(I_{f}\right)-1$.

Figure: $V\left(I_{f}\right)=\{a, b, c, d\}$ the blue dots

$$
g_{1}=\prod_{a \in V\left(I_{f}\right)}\left(x_{1}-a_{1}\right), g_{2}, \ldots, g_{n} \text { are interpolators. }
$$

IDEALS VS. \mathbb{R}-SUBSPACES

Shinar and Feinberg network, Science '10
This chemical reaction system exhibits Absolute Concentration Robustness (ACR) in Y_{p}.

Denote by $x_{1}, \ldots, x_{Y_{p}}=x_{7}, x_{8}, x_{9}$ the species concentrations.

Ideals vs. \mathbb{R}-SUBSPACES

Shinar and Feinberg network, Science '10

This chemical reaction system exhibits Absolute Concentration Robustness (ACR) in Y_{p}.

$$
\begin{align*}
& X D \underset{\kappa_{21}}{\stackrel{\kappa_{12}}{\rightleftarrows}} X \underset{\kappa_{32}}{\stackrel{\kappa_{23}}{\rightleftarrows}} X T \xrightarrow{\kappa_{34}} X_{p} \\
& X_{p}+Y \underset{\kappa_{65}}{\stackrel{\kappa_{56}}{\rightleftarrows}} X_{p} Y \xrightarrow{\kappa_{67}} X+Y_{p} \\
& X T+Y_{p} \underset{\kappa_{98}}{\stackrel{\kappa_{89}}{\rightleftarrows}} X T Y_{p} \xrightarrow{\kappa_{9,10}} X T+Y \tag{1}\\
& X D+Y_{p} \underset{\kappa_{12,11}}{\stackrel{\kappa_{11,12}}{\rightleftarrows}} X D Y_{p} \xrightarrow{\kappa_{12,13}} X D+Y
\end{align*}
$$

Denote by $x_{1}, \ldots, x_{Y_{p}}=x_{7}, x_{8}, x_{9}$ the species concentrations.

IdEALS vs. \mathbb{R}-SUBSPACES

Toric steady states and ACR

The reduced Gröbner basis with respect to the lexicographical order $x_{1}>x_{2}>x_{4}>x_{5}>x_{6}>x_{8}>x_{9}>x_{3}>x_{7}$ of the ideal f_{1}, \ldots, f_{9} consists of the following binomials:

$$
\begin{aligned}
g_{1}= & {\left[\kappa_{89} \kappa_{12} \kappa_{23} \kappa_{9,10}\left(\kappa_{12,11}+\kappa_{12,13}\right)+\kappa_{11,12} \kappa_{21} \kappa_{12,13}\left(\kappa_{98}+\kappa_{9,10}\right)\left(\kappa_{32}+\kappa_{34}\right)\right] x_{3} x_{7}+} \\
& \quad+\left[-\kappa_{23} \kappa_{34} \kappa_{12}\left(\kappa_{12,11}+\kappa_{12,13}\right)\left(\kappa_{98}+\kappa_{9,10}\right)\right] x_{3} \\
g_{2}= & {\left[-\kappa_{11,12} \kappa_{21} \kappa_{34}\left(\kappa_{98}+\kappa_{9,10}\right)\left(\kappa_{32}+\kappa_{34}\right)\right] x_{3}+} \\
& \quad+\left[\kappa_{11,12} \kappa_{21} \kappa_{12,13}\left(\kappa_{98}+\kappa_{9,10}\right)\left(\kappa_{32}+\kappa_{34}\right)+\kappa_{12} \kappa_{23} \kappa_{89} \kappa_{9,10}\left(\kappa_{12,11}+\kappa_{12,13}\right)\right] x_{9} \\
g_{3}= & {\left[-\kappa_{23} \kappa_{34} \kappa_{89} \kappa_{12}\left(\kappa_{12,11}+\kappa_{12,13}\right)\right] x_{3}+} \\
& \quad+\left[\kappa_{23} \kappa_{9,10} \kappa_{89} \kappa_{12}\left(\kappa_{12,11}+\kappa_{12,13}\right)+\kappa_{11,12} \kappa_{21} \kappa_{12,13}\left(\kappa_{98}+\kappa_{9,10}\right)\left(\kappa_{32}+\kappa_{34}\right)\right] x_{8} \\
g_{4}= & \kappa_{67} x_{6}-\kappa_{34} x_{3} \\
g_{5}= & \kappa_{56} \kappa_{67} x_{4} x_{5}+\kappa_{34}\left(-\kappa_{65}-\kappa_{67}\right) x_{3} \\
g_{6}= & \kappa_{23} x_{2}+\left(-\kappa_{32}-\kappa_{34}\right) x_{3} \\
g_{7}= & -\kappa_{21}\left(\kappa_{32}+\kappa_{34}\right) x_{3}+\kappa_{12} \kappa_{23} x_{1}
\end{aligned}
$$

Therefore, the network has toric steady states (for any generic choice of positive reaction rate constants) because the steady state ideal can be generated by $g_{1}, g_{2}, \ldots, g_{7}$ (and shows ACR in Y_{p}).
However, we can prove that linear combinations only with real coefficients cannot reveal these properties.

Parameters

> The reduced lexicographic GB of $\{a x+b y, c x+d y\}$ with respect to the lexicographic order with $y \prec x$ equals $\{y, x\}$. Is this true for any value of a, b, c, d ?

This computation is made in $\mathbb{Q}(a, b, c, d)[x, y]$. The coefficients lie in the field of rational functions of the variables a, b, c, d, so we are allowed to divide by polynomials in the parameters a, b, c, d.

Parameters

The reduced lexicographic GB of $\{a x+b y, c x+d y\}$ with respect to the lexicographic order with $d \prec c \prec b \prec a \prec y \prec x$ equals $\{a d y-b c y, c x+d y, a x+b y\}$

This computation is made in $\mathbb{Q}[a, b, c, d, x, y]$, so we are not allowed to divide by polynomials in the parameters a, b, c, d

So, if $a d-b c \neq 0$ we get that $y=0$ from the first polynomial, and then either a or c are nonzero and we get that $x=0$ using the other two polynomials.

The computation with a, b, c, d as parameters and only 2 variables is much faster!

Descartes' Rule of signs

- Descartes' rule of signs was proposed by René Descartes in 1637 in "La Géometrie", an appendix to his "Discours de la Méthode".
- Given a univariate real
polynomial
$f(x)=c_{0}+\sum_{j=1} c_{j} x^{j}$, the number of positive real roots n_{f} of f (counted with multiplicity) is bounded by the number of sign
variations in the ordered sequence of coefficient signs $\sigma\left(c_{0}\right), \ldots, \sigma\left(c_{r}\right)$ (where we
discard the 0's in this sequence and we add a 1
each time two consecutive signs are different) and both quantities have the same parity.
- For instance, if
$f=c_{0}+3 x-90 x^{6}+2 x^{8}+x^{111}$
the sequence of coefficient
signs (discarding 0's) is:
$\sigma\left(c_{0}\right),+,-,+,+$. So, n_{f}
equals 2 if $c_{0} \geq 0$ and 3 if
$c_{0}<0$. Then, f has at most
2 or 3 positive real roots.
- If the number of sign
variations s is odd, then
there is at least 1 positive
root (or $3,5, \ldots, s$).

Descartes' Rule of signs

- Descartes' rule of signs was proposed by René Descartes in 1637 in "La Géometrie", an appendix to his "Discours de la Méthode".
- Given a univariate real polynomial $f(x)=c_{0}+\sum_{j=1}^{r} c_{j} x^{j}$, the number of positive real roots n_{f} of f (counted with multiplicity) is bounded by the number of sign variations in the ordered sequence of coefficient signs $\sigma\left(c_{0}\right), \ldots, \sigma\left(c_{r}\right)$ (where we discard the 0's in this sequence and we add a 1
each time two consecutive signs are different) and both quantities have the same parity.
- For instance, if

the sequence of coefficient signs (discarding 0's) is: equals 2 if $c_{0} \geq 0$ and 3 if $c_{0}<0$. Then, f has at most 2 or 3 positive real roots.
- If the number of sign variations s is odd, then there is at least 1 positive root (or $3,5, \ldots, s$).

Descartes' RUle of signs

- Descartes' rule of signs was proposed by René Descartes in 1637 in "La Géometrie", an appendix to his "Discours de la Méthode".
- Given a univariate real polynomial $f(x)=c_{0}+\sum_{j=1}^{r} c_{j} x^{j}$, the number of positive real roots n_{f} of f (counted with multiplicity) is bounded by the number of sign
variations in the ordered sequence of coefficient signs $\sigma\left(c_{0}\right), \ldots, \sigma\left(c_{r}\right)$ (where we discard the 0's in this sequence and we add a 1
each time two consecutive signs are different) and both quantities have the same parity.
- For instance, if $f=c_{0}+3 x-90 x^{6}+2 x^{8}+x^{111}$, the sequence of coefficient signs (discarding 0's) is: $\sigma\left(c_{0}\right),+,-,+,+$. So, n_{f} equals 2 if $c_{0} \geq 0$ and 3 if $c_{0}<0$. Then, f has at most 2 or 3 positive real roots.
- If the number of sign
variations s is odd, then there is at least 1 positive root (or $3,5, \ldots, s$).

Descartes' RULE of signs

- Descartes' rule of signs was proposed by René Descartes in 1637 in "La Géometrie", an appendix to his "Discours de la Méthode".
- Given a univariate real polynomial $f(x)=c_{0}+\sum_{j=1}^{r} c_{j} x^{j}$, the number of positive real roots n_{f} of f (counted with multiplicity) is bounded by the number of sign variations in the ordered sequence of coefficient signs $\sigma\left(c_{0}\right), \ldots, \sigma\left(c_{r}\right)$ (where we discard the 0 's in this sequence and we add a 1
each time two consecutive signs are different) and both quantities have the same parity.
- For instance, if
$f=c_{0}+3 x-90 x^{6}+2 x^{8}+x^{111}$, the sequence of coefficient signs (discarding 0's) is: $\sigma\left(c_{0}\right),+,-,+,+$. So, n_{f} equals 2 if $c_{0} \geq 0$ and 3 if $c_{0}<0$. Then, f has at most 2 or 3 positive real roots.
- If the number of sign variations s is odd, then there is at least 1 positive root (or $3,5, \ldots, s$).

Descartes' Rule of signs

- Given a univariate real polynomial $f(x)=c_{0}+\sum_{j=1}^{r} c_{j} x^{j}$, the number of positive real roots n_{f} of f (counted with multiplicity) is bounded by the number of sign variations in the ordered sequence of coefficient signs $\sigma\left(c_{0}\right), \ldots, \sigma\left(c_{r}\right)$ (where we discard the 0's in this sequence and we add a 1 each time two consecutive signs are different) and both quantities have the same parity.
- Note that one consequence is that we can bound the number of real roots in terms of the number of nonzero terms of f independently of its degree.
- The rule is sharp in the sense that given a sequence of signs, there exist polynomials with coefficients of these signs with n_{f} equal to the number of sign variations. We'll see how to get these nolynomials in the forthcoming lecture on Thursday.

Descartes' Rule of signs

- Given a univariate real polynomial $f(x)=c_{0}+\sum_{j=1}^{r} c_{j} x^{j}$, the number of positive real roots n_{f} of f (counted with multiplicity) is bounded by the number of sign
variations in the ordered sequence of coefficient signs $\sigma\left(c_{0}\right), \ldots, \sigma\left(c_{r}\right)$ (where we discard the 0's in this sequence and we add a 1 each time two consecutive signs are different) and both quantities have the same parity.
- Note that one consequence is that we can bound the number of real roots in terms of the number of nonzero terms of f, independently of its degree.
- The rule is sharp in the sense that given a sequence of signs, there exist polynomials with coefficients of these signs with n_{f} equal to the number of sign variations. We'll see how to get these polynomials in the forthcoming lecture on Thursday.

Descartes' RUle of signs

- Given a univariate real polynomial $f(x)=c_{0}+\sum_{j=1}^{r} c_{j} x^{j}$, the number of positive real roots n_{f} of f (counted with multiplicity) is bounded by the number of sign
variations in the ordered sequence of coefficient signs $\sigma\left(c_{0}\right), \ldots, \sigma\left(c_{r}\right)$ (where we discard the 0 's in this sequence and we add a 1 each time two consecutive signs are different) and both quantities have the same parity.
- Note that one consequence is that we can bound the number of real roots in terms of the number of nonzero terms of f, independently of its degree.
- The rule is sharp in the sense that given a sequence of signs, there exist polynomials with coefficients of these signs with n_{f} equal to the number of sign variations. We'll see how to get these polynomials in the forthcoming lecture on Thursday.

Sturm's Theorem

- Sturm sequence: Given a univariate polynomial $p \in \mathbb{R}[x]$, the associated Sturm sequence equals:
$p_{0}=p, p_{1}=p^{\prime}$, and $p_{i+1}=-\operatorname{rem}\left(p_{i-1}, p_{i}\right)$, for $i \geq 1$. The sequence stops when $p_{i+1}=0$. The p_{i} 's can be replaced by any positive multiple.
- For $c \in \mathbb{R}$, let $\operatorname{var}(c)$
denote the number of sign changes in the sequence $p_{0}(c), \ldots, p_{m}(c)$.
- Sturm's theorem (1829):

Let $a<b$ and assume that neither a nor b are multiple roots of $p(x)$. Then, the number of distinct roots of p in $(a, b]$ equals the difference $\operatorname{var}(a)-\operatorname{var}(b)$.

Sturm's Theorem

- Sturm's theorem (1829):

Let $a<b$ and assume that neither a nor b are multiple roots of $p(x)$. Then, the number of distinct roots of p in $(a, b]$ equals the difference $\operatorname{var}(a)-\operatorname{var}(b)$.

- $p=x^{3}-x^{2}+x-1=$ $(x-1)\left(x^{2}+1\right)$. Its Sturm sequence equals

$$
\begin{aligned}
& x^{3}-x^{2}+x-1, x^{2}- \\
& 2 / 3 x+1 / 3,-x+2,-1 .
\end{aligned}
$$

Then, the number of distinct roots of p in $(0, r]$ for r big, equals the difference between $\operatorname{var}(0)$
$=$ the sign variation of $-1,1 / 3,2,-1=2$ and $\operatorname{var}(r)=\operatorname{sign}$ variation of the leading coefficients $1,1,-1,-1=1$, that is p has a single root in $(0, r]$. Note that this is the number of positive roots of p in $(0,+\infty)=\mathbb{R}_{>0}$.

