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Our goal for this class:

Present basic computational tools to deal with polynomials.

Alicia Dickenstein (UBA) Basics on Computational Algebra June 4, 2024 2 / 17



Introduction

Our setting

(Bio)chemical reaction networks define systems of ordinary
differential equations with (in general, unknown)
parameters

We will assume: Mass Action Kinetics (MAK). Then, the
associated system of differential equations in an
autonomous polynomial dynamical system ẋ = f(x) in
many variables.

We will present a super quick introduction to Gŕ’obner
bases and elimination of variables.

We will also recall Descartes rule of signs and Sturm
theorem about real roots of univariate polynomial with real
coefficients.
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Introduction

Dealing with polynomials in several variables
A good reference is the book Ideals, varieties and algorithms, by Cox,
Little and O’Shea.

Definition: A term order ≺ is a total order on the monomials
xα = xα1

1 . . . xαnn (or on their exponents α ∈ Zn≥0) such that if

xα ≺ xβ, for any γ we have that xα+γ ≺ xβ+γ and 1 ≺ xα, for
any α.
For instance, we can consider a lexicographic order (associ-
ated with an order of the variables), a degree-lexicographic
order, the reverse degree-lexicographic order, orders given by
weights, etc.

The polynomial ideal If generated by a finite number of
polynomials f1, . . . , fs ∈ k[x1, . . . , xn] is given by all the
linear combinations

∑s
i=1 gifi with g1, . . . , gs polynomials

in k[x1, . . . , xs]. All polynomial ideals are of this form. A
Gröbner basis (GB) of If associated with a given term or-
der ≺ is a system of generators of If with good properties.
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Introduction

An example

We compute a GB of the
ideal generated by
f1 = x2, f2 = x− y2 w.r. to
the lexicographic order with
y ≺ x.

f3 = S(f1, f2) = f1 − xf2 =
x2 − x2 + xy2 = xy2.

S(f1, f3) = 0 (monomials).

f4 = S(f2, f3) = y2f2 − f3 =
y2x− y4 − xy2 = −y4.

All further S-polynomials
are 0. A GB is given by
{f1, f2, f3, f4}, but in fact as
the respective leading terms
are x2, x, xy2, y4, also
{f2, f4} = {x− y2, y4} is a
(reduced) GB of If .

As the zero set of f1 and f2
(and of all the polynomials
in If ) is the origin (0, 0)
then, as y vanishes there,
Hilbert Nullstellensatz
asserts that there is a power
of y that lies in the ideal,
and we found such a power
(the minimal one).

If we take the lexicographic
order with x ≺ y, the
leading terms are
f1 = x2, f2 = x− y2, which
are coprime, and thus they
are already a GB of If for
this other term order.
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Introduction

Some comments

For a linear system, lexicographic Gröbner basis = Gauss
elimination.

We can use GB computations to find all linear relations (with
constant coefficients, not polynomial coefficients). Problem:
How?.

In the previous example y4 = −(x+ y2)(x− y2) + 1x2 but it
cannot be obtained only with constant coefficients, we need
polynomial coefficients. How can we know this?

GB’s are implemented in all CAS = Computer algebra systems
(e.g. Macaulay2, Singular, Sage, etc. (free) or Maple,
Mathematica, etc. (commercial)) and perform elimination of
variables (in general, not computing a lexicographic GB because
the computational complexity is high). There are many
improvements in the original algorithm (now they even use AI to
decide what reductions to make).
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Introduction

Elimination of variables
Elimination of variables is not as simple over the polynomial ring

as the triangulation of linear systems

Take f1 = x2 +y+z−1, f2 = y2 +x+z−1, f3 = z2 +x+y−1 in
k[x, y, z]. We would like to triangulate the system. But this is
the answer we can get (a GB for the lex order z ≺ y ≺ x:

p = z6 − 4 z4 + 4 z3 − z2, z4 + 2 yz2 − z2,

y2 − z2 − y + z, z2 + x+ y − 1.

This ideal has a finite number of zeros in Cn. Do you see
why?

However, the ideal is not radical: there are polynomials van-
ishing on the common zeros but not in the ideal.
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Introduction

Shape lemma

Assume If ⊂ k[x1, . . . , xn] (k any field contained in C) has a finite
number of complex solutions V (If ) and it is radical. Assume also
that x1 separates points of V (If ), that is, the first coordinates of
all the points in V (If ) are all different. Then, a reduced lexico-
graphic GB of If where x1 is the smallest variable has the form:

G = {g1(x1), x2 − g2(x1), . . . , xn − gn(xn),

with deg(g1) ≤ #V (If ), and for i > 1 deg(gi) ≤ #V (If )− 1.
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Introduction

Figure: V (If ) = {a, b, c, d} the blue dots

g1 =
∏
a∈V (If )

(x1 − a1), g2, . . . , gn are interpolators.
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Introduction

Ideals vs. R-subspaces
Shinar and Feinberg network, Science ’10

This chemical reaction system exhibits Absolute Concentration
Robustness (ACR) in Yp.

XD
κ12

�
κ21

X
κ23

�
κ32

XT
κ34→ Xp

Xp + Y
κ56

�
κ65

XpY
κ67→ X + Yp

XT + Yp
κ89

�
κ98

XTYp
κ9,10→ XT + Y

XD + Yp
κ11,12

�
κ12,11

XDYp
κ12,13→ XD + Y

(1)

Denote by x1, . . . , xYp = x7, x8, x9 the species concentrations.
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Introduction

Ideals vs. R-subspaces
Toric steady states and ACR
The reduced Gröbner basis with respect to the lexicographical
order x1 > x2 > x4 > x5 > x6 > x8 > x9 > x3 > x7 of the ideal
f1, . . . , f9 consists of the following binomials:

g1 = [κ89κ12κ23κ9,10(κ12,11 + κ12,13) + κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34)]x3x7+
+[−κ23κ34κ12(κ12,11 + κ12,13)(κ98 + κ9,10)]x3

g2 = [−κ11,12κ21κ34(κ98 + κ9,10)(κ32 + κ34)]x3+
+[κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34) + κ12κ23κ89κ9,10(κ12,11 + κ12,13)]x9

g3 = [−κ23κ34κ89κ12(κ12,11 + κ12,13)]x3+
+[κ23κ9,10κ89κ12(κ12,11 + κ12,13) + κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34)]x8

g4 = κ67x6 − κ34x3
g5 = κ56κ67x4x5 + κ34(−κ65 − κ67)x3
g6 = κ23x2 + (−κ32 − κ34)x3
g7 = −κ21(κ32 + κ34)x3 + κ12κ23x1

Therefore, the network has toric steady states (for any generic
choice of positive reaction rate constants) because the steady
state ideal can be generated by g1, g2, . . . , g7 (and shows ACR
in Yp).
However, we can prove that linear combinations only with real
coefficients cannot reveal these properties.
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Introduction

Parameters

The reduced lexicographic GB of {ax + by, cx + dy} with
respect to the lexicographic order with y ≺ x equals {y, x}. Is
this true for any value of a, b, c, d?

This computation is made in Q(a, b, c, d)[x, y]. The coeffi-
cients lie in the field of rational functions of the variables
a, b, c, d, so we are allowed to divide by polynomials in the
parameters a, b, c, d.
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Introduction

Parameters

The reduced lexicographic GB of {ax + by, cx + dy} with
respect to the lexicographic order with d ≺ c ≺ b ≺ a ≺ y ≺ x
equals {ady − bcy, cx+ dy, ax+ by}

This computation is made in Q[a, b, c, d, x, y], so we are not
allowed to divide by polynomials in the parameters a, b, c, d

So, if ad− bc 6= 0 we get that y = 0 from the first polynomial,
and then either a or c are nonzero and we get that x = 0
using the other two polynomials.

The computation with a, b, c, d as parameters and only 2
variables is much faster!
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Introduction

Descartes’ rule of signs

Descartes’ rule of signs was
proposed by René Descartes
in 1637 in “La Géometrie”,
an appendix to his “Discours
de la Méthode”.

Given a univariate real
polynomial
f(x) = c0 +

∑r
j=1 cjx

j , the
number of positive real roots
nf of f (counted with
multiplicity) is bounded by
the number of sign
variations in the ordered
sequence of coefficient signs
σ(c0), . . . , σ(cr) (where we
discard the 0’s in this
sequence and we add a 1

each time two consecutive
signs are different) and both
quantities have the same
parity.

For instance, if
f = c0+3x−90x6+2x8+x111,
the sequence of coefficient
signs (discarding 0’s) is:
σ(c0),+,−,+,+. So, nf
equals 2 if c0 ≥ 0 and 3 if
c0 < 0. Then, f has at most
2 or 3 positive real roots.

If the number of sign
variations s is odd, then
there is at least 1 positive
root (or 3, 5, . . . , s).
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de la Méthode”.

Given a univariate real
polynomial
f(x) = c0 +

∑r
j=1 cjx

j , the
number of positive real roots
nf of f (counted with
multiplicity) is bounded by
the number of sign
variations in the ordered
sequence of coefficient signs
σ(c0), . . . , σ(cr) (where we
discard the 0’s in this
sequence and we add a 1

each time two consecutive
signs are different) and both
quantities have the same
parity.

For instance, if
f = c0+3x−90x6+2x8+x111,
the sequence of coefficient
signs (discarding 0’s) is:
σ(c0),+,−,+,+. So, nf
equals 2 if c0 ≥ 0 and 3 if
c0 < 0. Then, f has at most
2 or 3 positive real roots.

If the number of sign
variations s is odd, then
there is at least 1 positive
root (or 3, 5, . . . , s).

Alicia Dickenstein (UBA) Basics on Computational Algebra June 4, 2024 14 / 17



Introduction
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σ(c0), . . . , σ(cr) (where we
discard the 0’s in this
sequence and we add a 1
each time two consecutive
signs are different) and both
quantities have the same
parity.

Note that one consequence is
that we can bound the
number of real roots in
terms of the number of
nonzero terms of f ,
independently of its degree.

The rule is sharp in the
sense that given a sequence
of signs, there exist
polynomials with coefficients
of these signs with nf equal
to the number of sign
variations. We’ll see how to
get these polynomials in the
forthcoming lecture on
Thursday.
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Introduction

Sturm’s theorem

Sturm sequence: Given a
univariate polynomial
p ∈ R[x], the associated
Sturm sequence equals:
p0 = p, p1 = p′, and
pi+1 = −rem(pi−1, pi), for
i ≥ 1. The sequence stops
when pi+1 = 0. The pi’s
can be replaced by any
positive multiple.

For c ∈ R, let var(c)

denote the number of sign
changes in the sequence
p0(c), . . . , pm(c).

Sturm’s theorem (1829):
Let a < b and assume that
neither a nor b are
multiple roots of p(x).
Then, the number of
distinct roots of p in (a, b]
equals the difference
var(a)− var(b).
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Sturm’s theorem

Sturm’s theorem (1829):
Let a < b and assume that
neither a nor b are
multiple roots of p(x).
Then, the number of
distinct roots of p in (a, b]
equals the difference
var(a)− var(b).
p = x3 − x2 + x− 1 =
(x− 1)(x2 + 1). Its Sturm
sequence equals
x3 − x2 + x−1, x2 −
2/3x+1/3,−x+ 2,−1.

Then, the number of
distinct roots of p in (0, r]
for r big, equals the
difference between var(0)
= the sign variation of
−1, 1/3, 2,−1 = 2 and
var(r) = sign variation of
the leading coefficients
1, 1,−1,−1 = 1, that is p
has a single root in (0, r].
Note that this is the
number of positive roots
of p in (0,+∞) = R>0.
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