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Our goal for this class:

Define the main characters of this course.
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Introduction

Our setting

(Bio)chemical reaction networks define systems of ordinary
differential equations with (in general, unknown)
parameters

We will assume: Mass Action Kinetics (MAK).

The basic mathematical theory was developed by chemical
engineers: Horn, Jackson y Feinberg and independently
Volpert, since 1972.

Tools from (real and complex) algebraic geometry are more
recent: [Gatermann ’01–’04], [Craciun, D., Shiu, Sturmfels
’07], [Conradi et al. 2007- . . . ], [Gunawardena et al, ’08
-. . . ], [Shiu-Sturmfels ’10-. . . ], [Feliu, Wiuf ’10-. . . ], [D.,
Pérez Millán ’11-. . . ], etc.
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Introduction

Chemical reaction networks (CRN)

Consider the following chemical reaction to produce water from
H2 and O2 (diatomic hydrogen and oxygen):

2H2O2H2 +O2

κ
//

The positive number κ denotes a reaction rate constant.

We order the species (H2, O2, H2O) and the complexes
{2H2 +O2, H2O} in the vertices of this small directed graph
(digraph). We associate: 2H2 +O2 ↔ (2, 1, 0), 2H2O ↔ (0, 0, 2)
with nonnegative integer vectors.

The net production of each species in this reaction is given by
the difference (0, 0, 2)− (2, 1, 0) = (−2,−1, 2) ∈ Z3, which
expresses the fact that 2 molecules of H2 and one of O2 are
consumed and 2 molecules of water are created.
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Introduction

Example: T-cell signal transduction model

T-cell receptors bind to both self-antigens and foreign antigens. How

can T-cells be sensitive and specific in recognizing self vs. foreign?

Model due to [McKeithan ’95], immunologist; [Sontag ’01]:

A+B

D C

κ21
κ12

κ23

κ31

%%

ee

oo

88

A = T-cell receptor, B = MHC of antigen-presenting cell

C = A bound to B, D = activated form of C

Alicia Dickenstein (UBA) Basics on CRN June 3, 2024 5 / 17



Introduction

A+B

D C

κ21
κ12

κ23

κ31

%%

ee

oo

88

ThisCRN has:

4 reactions among the. . .

m = 3 complexes A+B, C, and D
which are composed by. . .

s = 4 species A, B, C, and D.
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Introduction

Explicit equations

A + B

D C

κ21

κ12

κ23

κ31

%%

ee

oo

88

The differential equations that govern x(t) = (xA(t), xB(t), xC(t), xD(t)) are:

dx

dt
= κ12 xAxB

(
−1
−1
1
0

)
+ κ21 xC

(
1
1

−1
0

)
+ κ23 xC

(
0
0

−1
1

)
+ κ31xD

(
1
1
0

−1

)

dxA
dt

= −κ12xAxB + κ21xC + κ31xD =
dxB
dt

dxC
dt

= κ12xAxB − κ21xC − κ23xC
dxD
dt

= κ23xC − κ31xD
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Introduction

Two Norwegians in the XIX-th century

The Law of Mass Action was proposed by Cato Guldberg
(1836–1902) and Peter Waage (1833-1900).

Waage was a chemist and
Guldberg was a mathematician.
They were close friends and
brothers in law.

Their work was published in

Norwegian in 1862, then in

French in 1867, and again in

German around 1880, until it was

recognized (in the meantime, it

was rediscovered by the Dutch

physicist van’t Hoff.)
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Introduction

The Law of Mass Action was proposed by Cato Guldberg
(1836–1902) and Peter Waage (1833-1900).

It is derived from the idea that the reaction velocity is
proportional to the probability of collision of reactants (+
independence assumption). This kinetics assumes that all the
species are abundant and that they are well mixed.
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Definition

CRN with MAK

Starting data: a set of n species + a directed graph whose

arrows represent a set of r reactions (labeled edges i
κij→ j, where

κij ∈ R>0 are the reaction rate constants) between m complexes

in Zn. We also denote the reactions yi
κij→ yj .

View the concentrations x1, x2, . . . , xn as functions of time t.

Mass-action kinetics specified by the network G is the following
autonomous system of ordinary differential equations:

dx

dt
=

∑
yi→yj

κi,j x
yi (yj − yi), (1)

with xyi = xyi11 xyi22 · · ·xyiss .
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Definition

dx

dt
=

∑
(i,j)∈E

κi,j x
yi (yj − yi).

dxk
dt

= fk(x), k = 1, . . . , s, (2)

where f1, . . . , fs are polynomials in R[x1, . . . , xs]. The steady states of

the kinetic system (2) are the (nonnegative real) zeros of f1, . . . , fn.

Basic important information

As polynomials are C1-functions, for each initial condition x0 ∈ Rn
there is a unique solution curve (trajectory) x(t) : I → Rn defined in
an interval around 0 with x(0) = x0. A trajectory need not converge,
but if it does, its limit is a steady state (and in general, the ss drive
the dynamics). If a solution is bounded, then x is defined over all
R>0. In most cases, the rate constants are unknown (difficult or
impossible to be determined), so we would like to infer dynamical
properties of the system from the structure of the reaction network.
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Definition

How general are these polynomial systems?

dxk
dt

=
∑

κi,j x
yi (yjk − yik),

fk(x) =
(∑

κi,j x
yi yjk

)
︸ ︷︷ ︸

pk(x)

−
(∑

κi,j x
yi yik

)
︸ ︷︷ ︸

xkqk(x)

,

where pk, qk have non negative coefficients.

Hungarian Lemma - V. Hárs, J. Tóth, 1979

A polynomial system of n real polynomials f1, . . . , fn in n
variables arises from a mass-action kinetics dynamical system if
and only if there exists real polynomials pk, qk, k = 1, . . . , n with
non negative coefficients such that fk = pk − xkqk for all k.
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Definition

Examples and non-examples

“Chaotic” Lorenz equations
cannot come from a MAK
modeling:

dx

dt
= αy − αx

dy

dt
= γx− y − xz

dz

dt
= xy − βz

Many models in population dy-
namics, as the Lotka-Volterra
predator-prey model or the
standard epidemiological mod-
els are are of the MAK form:
dx
dt = ax− bxy,
dy
dt = cxy − dy, a, b, c, d > 0.

CRN in chemistry might have

complexes with high coordi-

nates. Usual models in systems

biology, in particular enzy-

matic pathways, are of this

form, with small coordinates

(exponents).
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Definition

Stoichiometric subspace
dx

dt
=

∑
yi→yj

κi,j x
yi (yj − yi).

The subspace S ⊂ Rn generated by the differences
{yj − yi | yi → yj} is known as the stoichiometric subspace.

Clearly, dxdt is in S ∀t.
Thus, a trajectory x(t) starting at a non-negative point x(0)
defined in an interval I containing 0 lies in an affine linear space
parallel to S.

The (linear) equations of x(0) + S are linear conservation
relations.
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relations.

Alicia Dickenstein (UBA) Basics on CRN June 3, 2024 14 / 17



Definition

A two–component system
Two-component signal transduction systems enable bacteria to sense,
respond, and adapt to a wide range of environments, stressors, and
growth conditions. It relies on phosphotransfer reactions.

HK00
k1−→ HKp0

k2−→ HK0p
k3−→ HKpp

HK0p +Htp
k4−→ HK00 +Htpp

HKpp +Htp
k5−→ HKp0 +Htpp

Htpp
k6−→ Htp,

k = (k1, . . . , k6) are positive rate constants.

The hybrid histidine kinase HK has two phosphorylable domains: the
four possible states of HK are HK00, HKP0, HK0P , HKPP .

Htp is the unphosphorylated histidine phosphotransferase protein,

Htpp the phosphorylated form.
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Definition

A two–component system
Call x1, . . . , x6 the concentration of the species of the network:

X1
k1−→ X2

k2−→ X3
k3−→ X4

X3 +X5
k4−→ X1 +X6 (3)

X4 +X5
k5−→ X2 +X6

X6
k6−→ X5

Under mass-action kinetics, we get the following dynamical system

dx1
dt

= −k1x1 + k4x3x5,
dx2
dt

= k1x1 − k2x2 + k5x4x5,

dx3
dt

= k2x2 − k3x3 − k4x3x5,
dx4
dt

= k3x3 − k5x4x5,

dx5
dt

= −k4x3x5 − k5x4x5 + k6x6,
dx6
dt

= k4x3x5 + k5x4x5 − k6x6.
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Definition

Linear dependencies give conservation relations

From f1 + f2 + f3 + f4 = f5 + f6 = 0, we get two conservation
relations:

x1 + x2 + x3 + x4 =T1,

x5 + x6 =T2.

Thus, trajectories lie in a 4d-plane in 6d-space. Total amounts T1, T2
are determined by the initial conditions x(0).

Exercise: Is S = {x ∈ R6 : x1 + x2 + x3 + x4 = x5 + x6 = 0}?
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