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Fundamentals of Financial Risk Modelling Modelling Value and Value Change

Balance Sheet of a Bank

Bank XYZ (31st December 2012)
Assets Liabilities

Cash £10M Customer deposits £80M
(and central bank balance)
Securities £50M Bonds issued
- bonds - senior bond issues £25M
- stocks - subordinated bond issues £15M
- derivatives Short-term borrowing £30M
Loans and mortgages £100M Reserves (for losses on loans) £20M
- corporates
- retail and smaller clients Debt (sum of above) £170M
- government
Other assets £20M
- property
- investments in companies Equity £30M
Short-term lending £20M
Total £200M Total £200M
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Fundamentals of Financial Risk Modelling Modelling Value and Value Change

The Trading Book

• Contains assets that are available to trade.
• Can be contrasted with the more traditional banking book which contains

loans and other assets that are typically held to maturity and not traded.
• Trading book assets are supposed to be easy to trade, highly liquid and

straightforward to value (mark-to-market) at any point in time.
• Examples: fixed income instruments; standardized derivatives.
• The trading book is often identified with market risk whereas the banking

book is largely affected by credit risk.
• The Basel rules allow banks to use internal models to measure market

risks in the trading book.
• The trading book was abused in the financial crisis of 2007–2009. Many

securitized credit instruments (e.g. CDO tranches) were held in the
trading book where they were subject to lower capital requirements.
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Fundamentals of Financial Risk Modelling Modelling Value and Value Change

Modelling Value and Value Change

The risk factors at time t are denoted by the vector Zt = (Zt,1, . . . ,Ztd,).
These include, for example, equity prices, exchange rates, interest rates
for different maturities and volatility parameters.
The value of the trading book is given by formula of form

Vt = f (t ,Zt ) (1)

where f is the portfolio mapping which is assumed to be known.
The risk factors Zt are observable at time t and hence Vt is known at t .
Assuming positions are held over the period [t , t + 1], the trading book
loss is described by the random variable

Lt+1 = −(Vt+1 − Vt ) = − (f (t + 1,Zt+1)− f (t ,Zt ))

= − (f (t + 1,Zt + Xt+1)− f (t ,Zt ))

= l[t](Xt+1)

where Xt+1 = Zt+1 − Zt are the risk-factor changes and l[t] is a function
we refer to as the loss operator.
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Fundamentals of Financial Risk Modelling Modelling Value and Value Change

The Essence of the Problem

To estimate the conditional loss distribution

Ft+1(x) = P
(
l[t](Xt+1) ≤ x | Ft

)
where Ft denotes the available information at time t .
To estimate risk measures like VaR and expected shortfall (ES) that
describe the tail of Ft+1.
Note that some methods used in practice apply an unconditional
approach, assuming stationarity of past risk-factor changes (Xs)s≤t and
estimating the distribution of l[t](X ) under stationarity assumption.

Challenges include:
The volatility and heavy tails of typical risk-factor changes.
Dimensionality of problem. The number of risk factors d may be very
large, although dimension reduction strategies (factor models) are used.
The loss operator is typically highly non-linear.
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Fundamentals of Financial Risk Modelling Risk Measurement

VaR and Expected Shortfall

Let L be a random variable with df F and let 0 < α < 1.
Value at Risk is defined to be

VaRα(L) = qα(F ) = F←(α) , (2)

where we use the notation qα(F ) for a quantile of the distribution of L and
F← for the (generalized) inverse of F .
Provided E(|L|) <∞, expected shortfall is defined to be

ESα(L) =
1

1− α

∫ 1

α

qu(F )du. (3)

If F is a continuous df then

ESα(L) = E(L | L ≥ VaRα(L)) .

These are the two most widely applied risk measures in practice.
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Fundamentals of Financial Risk Modelling Risk Measurement

Losses and Profits
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Fundamentals of Financial Risk Modelling Regulatory Background

Fundamental Review of the Trading Book (FRTB)

As a result of the FRTB, a new standard for capital for market risk in the
trading book (Basel Committee on Banking Supervision, 2016) has been
designed and adopted in Basel III.
Banks still have a choice between a standardized approach and an
internal-models approach, both of which have been revised.
There is a more rigorous internal model approval process.
From FRTB:

The bank must conduct regular backtesting and P&L attribution
programmes.
Backtesting requirements are based on comparing each desk’s
1-day static value-at-risk measure (calibrated to the most recent
12 months’ data) at both the 97.5th and 99th percentile.
If any given desk experiences either more than 12 exceptions at
the 99th or 30 at the 97.5th percentile, all of its positions must
be capitalised using the standardised approach.
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Fundamentals of Financial Risk Modelling Regulatory Background

Ingredients in the Capital Calculation

ESh1(P, j) = h1-day 97.5%-ES w.r.t. risk factors with liquidity horizon ≥ hj

ESR,S︸ ︷︷ ︸
reduced risk-factor set; stressed calibration

=

√√√√ 5∑
j=1

(√
hj − hj−1

h1
ESh1(P, j)

)2

︸ ︷︷ ︸
(h1,h2,h3,h4,h5)=(10,20,40,60,120), h0=0

IMCC(C) = ESR,S ×
ESF ,C

ESR,C︸ ︷︷ ︸
full risk-factors; current calibration

reduced risk-factors; current calibration

IMCC(Ci) = ESR,S,i ×
ESF ,C,i

ESR,C,i︸ ︷︷ ︸
standalone calc. for risk factor class i (IR,FX,EQ,etc.)

IMCC︸ ︷︷ ︸
calculated daily

= ρ · IMCC(C)︸ ︷︷ ︸
diversified

+(1− ρ)
∑

i

IMCC(Ci)︸ ︷︷ ︸
undiversified

, ρ = 0.5

CA = max{IMCCt−1 + SESt−1︸ ︷︷ ︸
non-modellable risk factors

, mc︸︷︷︸
multiplier

· IMCC + SES︸ ︷︷ ︸
running averages

}

ACC = CA︸︷︷︸
approved desks

+ DRC︸ ︷︷ ︸
default risk charge

+ CU︸︷︷︸
unapproved desks
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Fundamentals of Financial Risk Modelling Regulatory Background

The Multiplier

From FRTB:
The multiplication factor mc will be 1.5. Banks must add to this a
plus directly related to the ex-post performance of the model.
The plus will range from 0 to 0.5 based on the outcome of the
backtesting of the bank’s daily VaR at the 99th percentile based
on the current observations of the full set of risk factors.

The traffic light system:

Nexceptions ≤ 4 =⇒ mc = 1.5
Nexceptions = 5,6,7,8,9 =⇒ mc = 1.70,1.76,1.83,1.88,1.92

Nexceptions ≥ 10 =⇒ mc = 2, regulatory intervention
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Fundamentals of Financial Risk Modelling Regulatory Background

Additional Model Validation Standards

Additional tests are required which may include, for instance:
Testing carried out for longer periods than required for the
regular backtesting programme (eg three years); or
Testing carried out using the entire forecasting distribution using
the p-value of the desk’s profit or loss on each day. For example
the bank could be required to use in validation and make
available to the supervisor the following information for each
desk for each business day over the previous three years, with
no more than a 60-day lag:

(i) Two daily VaR’s for the desk calibrated to a one-tail 99.0 and 97.5
percent confidence level, and a daily ES calibrated to 97.5;

(ii) The daily P&L for the desk; and
(iii) The p-value for the P&L on each day for each desk (that is, the

probability of observing a profit that is less than, or a loss that is
greater than the amount reported according to the model used to
calculate ES).

Testing of portfolios must be done at both the trading desk and
bank-wide level.
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Fundamentals of Financial Risk Modelling Some Concepts in Time Series Analysis

Stylized facts of Financial Time Series

Consider discrete observations of a financial risk factor Zt made at daily,
weekly, or perhaps even monthly intervals. We are interested in
risk-factor changes: Xt = Zt − Zt−1.
Zt might be a log asset price (Zt = ln St ) in which case

Xt = (ln St − ln St−1) ≈ (St−1 − St ) /St−1

is often called a (log) return.
A realistic model should reflect stylized facts of risk-factor change series:

Risk-factor changes not iid but correlation low
Absolute changes highly correlated
Volatility appears to change randomly with time
Risk-factor changes are often leptokurtic or heavy–tailed
Extremes appear in clusters

GARCH-type models can be useful for modelling this behaviour.
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Fundamentals of Financial Risk Modelling Some Concepts in Time Series Analysis

ARCH and GARCH: Models for Conditional Variance

Let (Zt )t∈Z follow a strict white noise process with mean zero and
variance one. This just means iid.
ARCH and GARCH processes (Xt )t∈Z take the general form

Xt = σtZt , t ∈ Z, (4)

where σt , the volatility, is a function of the history up to time t − 1
represented as usual by Ft−1.
The conditional variance is var(Xt | Ft−1) = σ2

t .
Thus volatility is the conditional standard deviation of the process.
Depending on time horizon, a conditional mean term µt depending on
Ft−1 may be introduced so that Xt = µt + σtZt .
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Fundamentals of Financial Risk Modelling Some Concepts in Time Series Analysis

ARCH and GARCH Processes

Definition (ARCH(p) process)

(Xt ) follows an ARCH(p) process if, for all t ,

σ2
t = α0 +

p∑
j=1

αjX 2
t−j , with αj > 0.

Intuition: volatility influenced by large observations in recent past.

Definition (GARCH(p,q))

(Xt ) follows a GARCH(p,q) process (generalised ARCH) if, for all t ,

σ2
t = α0 +

p∑
j=1

αjX 2
t−j +

q∑
k=1

βkσ
2
t−k , with αj , βk > 0. (5)

Intuition: more persistence is built into the volatility.

c©2021 (QRM Tutorial) A.J. McNeil CRM Barcelona 2021 21 / 57



,

Fundamentals of Backtesting

Overview

1 Fundamentals of Financial Risk Modelling

2 Fundamentals of Backtesting

3 New Backtesting Methods Using PIT Values

c©2021 (QRM Tutorial) A.J. McNeil CRM Barcelona 2021 22 / 57



,

Fundamentals of Backtesting Introduction

Overview

1 Fundamentals of Financial Risk Modelling

2 Fundamentals of Backtesting
Introduction
Backtesting VaR and ES
Elicitability and Backtesting

3 New Backtesting Methods Using PIT Values

c©2021 (QRM Tutorial) A.J. McNeil CRM Barcelona 2021 23 / 57



,

Fundamentals of Backtesting Introduction

Essence of Backtesting

Backtesting is the practice of evaluating risk measurement procedures by
comparing out-of-sample estimates of risk measures with actual realized
losses and gains.
Backtesting allows us to evaluate the question of whether a given
estimation procedure produces credible risk measure estimates.
Suppose that a model has been used to estimate risk measures for the
distribution of losses in the next period.
At the end of the next period we have the opportunity to compare the risk
measure estimates with the actual realized loss.
When this procedure is repeated over many time periods we can monitor
the performance of methods and compare their relative performance.
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Fundamentals of Backtesting Introduction

Set-Up for Backtesting Discussion

Recall that, for t ∈ N, the trading book loss over [t − 1, t ] is the negative
P&L given by an expression of form

Lt = l[t−1](Xt )

where l[t−1] is a Ft−1-measurable function and Xt is a random vector of
changes in fundamental risk factors over [t − 1, t ].
The true (conditional) loss distribution is

Ft (x) = P (Lt ≤ x | Ft−1) . (6)

We denote the α-VaR and α-ES of this distribution by VaRα,t and ESα,t .

For t ∈ N the risk modelling group forms an estimate F̂t of Ft based on
information up to time t − 1.
Models may be parametric or non-parametric (e.g. HS).

The estimate F̂t is used to compute estimates V̂aRα,t and ÊSα,t .
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Fundamentals of Backtesting Backtesting VaR and ES

Backtesting VaR

We refer to the event {Lt > VaRα,t} as a VaR violation or exception.
Denote the indicator of this event by It = I{Lt>VaRα,t}.
Assuming a continuous loss distribution, we have, by definition of the
quantile, that

E(It | Ft−1) = P(Lt > VaRα,t | Ft−1) = 1− α , (7)

which may also be written as

E (hα(VaRα,t ,Lt ) | Ft−1) = 0

where hα is a so-called identification function given by

hα(q, l) = I{l>q} − (1− α). (8)

It may be shown that (7) holds if and only if the sequence of VaR
violation indicators (It ) forms a Bernoulli trials process, i.e. a process of
iid Bernoulli random variables with event probability 1− α.
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Fundamentals of Backtesting Backtesting VaR and ES

Properties of a Bernoulli Trials Process

1 If we sum the violation indicators over a number of different times, we
obtain binomially distributed random variables. For example,

M =
m∑

t=1

It ∼ B(m,1− α).

2 Suppose that the violations occur at the random times
1 ≤ T1 < · · · < TM ≤ m. If we set T0 = 0, then the spacings
Sj = Tj − Tj−1 will be independent geometrically distributed random
variables with mean 1/(1− α), so that

P(Sj = k) = αk−1(1− α), k ∈ N.

Both of these properties can be tested in empirical data.
Note that, for small event probability 1− α, the Bernoulli Trials Process may
be well approximated by a Poisson process and the geometric distribution
may be approximated by an exponential distribution.
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Fundamentals of Backtesting Backtesting VaR and ES

Testing for a Bernoulli Trials Process

Define the empirical indicator variables by Ît = I{Lt>V̂aRα,t}.

If P(Lt > V̂aRα,t | Ft−1) = 1− α at each time t , then the sequence of
indicator variables (̂It )1≤t≤m should behave like a realization from a
Bernoulli trials process with event probability (1− α).
There are a number of classical tests for a binomial distribution including
a likelihood ratio test (LRT), score test and Wald test.
The Basel internal model approval rules and traffic lights are essentially
based on the binomial LRT, although binomial score test is better sized.
Exponential spacings can be tested numerically or with a Q–Qplot.
A number of tests have been proposed to test for binomial behaviour and
independence, including the well-known test of Christoffersen (1998).
These are often called tests of conditional coverage and distinguished
from tests of unconditional coverage.
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Fundamentals of Backtesting Backtesting VaR and ES

Backtesting Expected Shortfall

Consider the identification function

h(q,e, l) =

(
l − e

e

)
I{l>q}

and note that E(h(VaRα,t ,ESα,t ,Lt ) | Ft−1) = 0.
We can define a conditional mean-zero process (Kt ) by
Kt = h(VaRα,t ,ESα,t ,Lt ) for all t .
Under the stronger assumption that (Lt ) follows a model of the form
Lt = σtZt , where σt is Ft−1-measurable and the (Zt ) are SWN(0,1)
innovations, (Kt ) is iid mean-zero process.
This suggests we form violation residuals of the form
K̂t = h(V̂aRα,t , ÊSα,t ,Lt ).
We can test for mean-zero behaviour using a bootstrap test (or t-test) on
the non-zero violation residuals (McNeil and Frey, 2000).
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Fundamentals of Backtesting Elicitability and Backtesting

Elicitability and Scoring Functions

The elicitability concept has been introduced into the backtesting
literature by Gneiting (2011); see also important papers by Bellini and
Bignozzi (2015) and Ziegel (2016).
A key concept is that of a scoring function S(y , l) which measures the
discrepancy between a forecast y and a realized loss l .
Law-invariant risk measures % can be considered as functionals T of the
distribution of the loss F .
Suppose that for some class of loss distribution functions X a real-valued
statistical functional T satisfies

T (F ) = arg min
y∈R

∫
R

S(y , l)dF (l) = arg min
y∈R

E(S(y ,L)) (9)

for a scoring function S and any loss distribution F ∈ X .
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Fundamentals of Backtesting Elicitability and Backtesting

Elicitability and Scoring Functions II

Suppose moreover that T (F ) is the unique minimizing value in (9).
The scoring function S is said to be strictly consistent for T .
The functional T (F ) (or corresponding risk measure) is said to be
elicitable.
Note that (9) implies that

d
dy

E(S(y ,L))

∣∣∣∣
y=T (F )

=

∫
R

d
dy

S(y , l)dF (l)
∣∣∣∣
y=T (F )

= E(h(T (F ),L)) = 0

where h is the derivative of the scoring function.
Thus elicitability theory also indicates how we may derive so-called
identification functions for hypothesis tests involving T (F ).
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Elicitability: Examples

The VaR risk measure corresponds to T (F ) = F←(α). For any 0 < α < 1
this functional is elicitable for strictly increasing distribution functions. The
scoring function

Sq
α(y , l) = |1{l≤y} − α||l − y | (10)

is strictly consistent for T .
If we take the negative of the derivative of this function with respect to y
we get the identification function hα(q, l) in (8).
The α-expectile of L is defined to be the risk measure that minimizes
E (Se

α(y ,L)) where the scoring function is

Se
α(y , l) = |1{l≤y} − α|(l − y)2. (11)

This risk measure is elicitable by definition.
Bellini and Bignozzi (2015) and Ziegel (2016) show that a risk measure is
coherent and elicitable if and only if it is the α-expectile risk measure for
α ≥ 0.5; see also Weber (2006). Expected shortfall is not elicitable.
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Comparative Backtesting

We define so-called VaR scores {Sq
α(V̂aRα,t ,Lt ) : t = 1, . . . ,m} where Sq

α

is the scoring function in (10).
The statistic

Q0 =
1
m

m∑
t=1

Sq
α(V̂aRα,t ,Lt )

can be used as a measure of relative model performance.

If two models A and B deliver VaR estimates {V̂aR
(A)
α,t , t = 1, . . . ,m} and

{V̂aR
(B)

α,t , t = 1, . . . ,m} with corresponding average scores QA
0 and QB

0 ,
then we expect the better model to give estimates closer to the true VaR
numbers and thus a value of Q0 that is lower.
Of course, the power to discriminate between good models and inferior
models will depend on the length of the backtest.
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New Backtesting Methods Using PIT Values Tests Based on PIT Values

Probability integral transform

Increasingly, regulators observe more than just VaR exceedances.

Consider the PIT process given by Pt = F̂t (Lt ).
Reported PIT values contain information about VaR exceedances at
every level α.

Pt ≥ α ⇐⇒ Lt ≥ V̂aRα,t

The ideal forecaster. If the (F̂t ) coincide with the true (Ft ), then the
process (Pt ) is iid U[0,1] (Rosenblatt, 1952).
In the US, banks on the Internal Models Approach for the trading book
have been required to report PIT values to regulators since 2013.
What is the best way to exploit this additional information?
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Simulated example of a backtest dataset

Days VaR Loss Exceed? PIT
1 2.492 0.278 0 0.602
2 2.968 0.716 0 0.713
3 3.336 -0.759 0 0.298
4 3.018 -0.451 0 0.364
5 2.654 2.955 1 0.995
6 3.335 -1.697 0 0.118
7 3.137 0.184 0 0.554
8 2.641 1.091 0 0.832
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Priorities for model performance

Diebold et al. (1998) develop forecast density tests based on testing PIT
values for iid U[0,1].
We will explain the testing framework for PIT values developed in Gordy
and McNeil (2020).
In a risk-management context, some quantiles of the forecast distribution
are more important than others.
Accuracy in “good tail” of high profits (low Pt ) is generally much less
important than accuracy in the “bad tail” of large losses (high Pt ).
We study a class of backtests for forecast distributions in which the test
statistic weights exceedances by a function of the probability level α.
The kernel function makes explicit the priorities for model performance.
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Spectral transformations

Tests are based on transformations of the indicator function for PIT
exceedances and are termed “spectral” in the integral transform sense.
The transformations take the form

Wt =

∫ 1

0
I{Pt≥u}dν(u) = ν([0,Pt ])

where ν is a Lebesgue-Stieltjes measure on [0,1].
Wt increases in Pt and can be thought of as a weighted PIT.
ν is chosen to apply weight to different levels in the unit interval, typically
in the region of the VaR level α = 0.99.
We refer to ν as the kernel measure for the transform.
The support of the measure describes subsets of [0,1] that are weighted.
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Spectral backtests

Univariate spectral backtests are backtests based on W1, . . . ,Wn.
Multivariate tests based on W1, . . . ,Wn where Wt = (Wt,1, . . . ,Wt,J)′

and Wt,j = νj ([0,Pt ]) for distinct measures ν1, . . . , νJ .
Null hypothesis. Let F 0

W denote df of Wt when Pt is uniform.

H0 : Wt ∼ F 0
W and Wt ⊥⊥ Ft−1, ∀t . (12)

Within the class of spectral backtests, we have tests of unconditional and
conditional coverage.
Unconditional coverage: test for correct distribution F 0

W ;
Conditional coverage: correct distribution and independence from Ft−1.
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Z-tests

Univariate Z-tests are based on the asymptotic normality
under H0 of W n = n−1∑n

t=1 Wt .
Solve for µW = E(Wt ) and σ2

W = var(Wt ) in the null model F 0
W .

Then it trivially follows from CLT that, under H0,

Zn =

√
n(W n − µW )

σW

d−−−→
n→∞

N(0,1).

Multivariate Z-tests are based on

Tn = n
(
W n − µW

)′
Σ−1

W

(
W n − µW

) d−−−→
n→∞

χ2
J .
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Discrete kernels

Dirac case
A Dirac kernal ν = δα yields Wt = I{Pt≥α}, the α-VaR exceedance indicator.
The (Wt) are iid Bernoulli(1− α) under H0.
The Z-test is the binomial score test promoted in Kratz et al. (2018).

Univariate
A general discrete kernel ν =

∑m
i=1 kiδαi yields Wt =

∑m
i=1 ki I{Pt≥αi}.

Wt satisfies
P(Wt = qi) = αi+1 − αj = i, i = 0, . . . ,m (13)

where qi =
∑j

j=1 kj , q0 = 0, α0 = 1 and αm+1 = 1.
The Z-test is a new test which allows user to vary the weights ki .

Multivariate
A set of m distinct Dirac kernels ν1 = δα1 , . . . , νm = δαm yields multivariate
tests based on Wt = (I{Pt≥α1}, . . . , I{Pt≥αm})

′.
The Z-test is identical to Pearson’s celebrated chi-squared test which has
been proposed by Campbell (2007) for backtesting.
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Continuous kernels

Univariate
A continuous kernel measure has density dν(u) = g(u)du for some
non-negative function g on [0, 1].
We study measures with support given by a window [α1, α2] ⊂ [0, 1].
Univariate Z-tests are considered by Costanzino and Curran (2015) and Du
and Escanciano (2017) who use uniform kernel g(u) = I{α1≤u≤α2}.

Bivariate
Bispectral Z-tests using two measures with common support can be
effective.
While univariate tests can detect systematic under or overestimation of
quantiles in kernel window, bivariate tests can detect more complex
misspecifications (crossing).

Mixed kernels
We also consider one test (probitnormal score test) with a kernel that
corresponds to a mixed measure (discrete and continuous parts).
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Kernel list for examples

BIN Binomial score test (Dirac case)
Z3p Univariate discrete with weight on 3 points

Pearson3 Multivariate discrete on 3 points (Pearson chi-squared test)
ZU Univariate continuous test with uniform kernel

ZLp Univariate continuous test with linear increasing kernel
ZLL Bivariate continuous test with two linear kernels.

PNS Bivariate mixed kernel test.
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Illustration of selected kernels
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In this case the kernel window is [α1, α2] = [0.985,0.995].
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What the tests detect
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Empirical distribution of PITs should be close to diagonal. Tests pick up
deviations within the kernel window - under/overestimation, crossing.
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Overview

1 Fundamentals of Financial Risk Modelling

2 Fundamentals of Backtesting

3 New Backtesting Methods Using PIT Values
Tests Based on PIT Values
Spectral backtests
Conditional spectral tests
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Unmodelled volatility in PIT values
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Histograms and ACF plots of PIT-values (Pt ) and transformed PIT-values
(|2Pt − 1|). Volatility of returns has not been captured.
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Testing the martingale difference property

Let W̃t = Wt − µW for all t . Under H0 the martingale difference (MD)
property hold: E(W̃t | Ft−1) = 0.
For any Ft−1-measurable ht−1 vector this implies E(ht−1W̃t ) = 0.
We consider ht−1 = (1,h(Pt−1), . . . ,h(Pt−k ))′ for some choice of h.
Let Yt = ht−1W̃t for t = k + 1, . . . ,n. Let Y = (n − k)−1∑n

t=k+1 Yt and let
Σ̂Y denote a consistent estimator of ΣY := cov(Yt ).
Giacomini and White (2006) show that under very weak assumptions, for
large enough n and fixed k ,

(n − k) Y
′

Σ̂−1
Y Y ∼ χ2

k+1.
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Conditional spectral tests

This framework generalizes the dynamic quantile test of Engle and
Manganelli (2004) which corresponds to ν = δα and h(p) = I{p ≥ α}.
Case k = 0 is ordinary spectral Z-test.
Case k = 1 is an analog of Markov chain LR-test of Christoffersen (1998).
Martingale-difference extensions of multispectral tests are also available.
We choose h(p) = |2p − 1| to target unmodelled stochastic volatility.
Results show that unconditional spectral tests are not sensitive to
violations of the MD hypothesis caused by serial dependence in the PITs,
provided their distribution is close to uniform.
The conditional spectral tests can pick up the serial dependence.
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Concluding Remarks

Under FRTB model validation and backtesting requirements have
become more stringent and now extend to desk level.
Backtesting exceptions may lead to a higher multiplier applied to a firm’s
capital requirement and may also lead to withdrawal of internal model
status for particular desks or the whole trading book.
To comply with the new requirements, and anticipate developments,
banks can implement tests based on realized p-values that go beyond
simple binomial exception tests.
Realized p-values give an overarching framework for discussing many
backtesting approaches that have been proposed.
Multinomial exception tests at several levels are an easy extension to
binomial tests that are much more powerful, particularly at exposing
systematic underestimation of risk.
Tests that can identify serial dependence in PIT values, caused by failure
to adequately model the dynamics of trading book risk, can also be
constructed.
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