Select Page
E-mail Dolors.Herbera@uab.cat
Position Associate Professor
Research interests Representation Theory
Group Algebra Geometry Number Theory And Topology
Herbera, Dolors
Biosketch

PhD at Universitat Autònoma de Barcelona in 1992. Post-doc at Rutgers University from 1993 to 1994 with a Fulbright Fellowship. Associated Porfessot at Universitat Autònoma de Barcelona since 1995. Visiting professor at Università di Padova(2004-05), Universitat Autónoma de México (2010), NTNU (20011) and Bielefeld University (2011).

Two PhD Thesis advised, and advising a third one. More that 40 research papers written. Research results include proving that artinian modules do not satisfy the Krull-Schmidt Theorem, solving a question posed by Krull in 1934, and a positive solution to the so called Baer splitting problem posed in 1962.

President of the Societat Catalana de Matemàtiques from February 2019 to december 2022. Secretary of the Comité Español de Matemáticas (Spanish adhering organization to IMU) since 2019.

She is on the editorial board of Journal of Algebra and its Applications and of Communications in Algebra.

Personal webpage: https://mat.uab.cat/~dolors/

Other Research Interests
  • Commutative and non-commutative algebra.
  • Homological Algebra.
  • Category Theory.
  • Division Rings
Projects

Anillos, módulos, C*-álgebras, y dinámica: clasificación, estructura fina y regularidad, PID2020-113047GB-I00/AEI/10.13039/501100011033
Ara Bertran, P., Bosa Puigredon, J., Cantier, L. N., Claramunt Carós, J., Antoine Riolobos, R., Cedo Gine, F., Herbera Espinal, M. D., Pardo Espino, E. Perera Domenech, Ministerio de Economia y Competitividad (MINECO). Active from 1/09/21 to 31/08/24

 

Leader of the project LIGAT, Laboratori d'Interaccions entre Geometria, Àlgebra i Topologia (2021 SGR 01015 (2022--2025)). Total Amount 60.000 euros. Funding agency: AGAUR Agència de Gestió d'Ajuts Universitaris i de Recerca (Generalitat de Catalunya, Spain)

Selected publications

D. Herbera, P. Príhoda and R. Wiegand. Big pure-projective modules over commutative noetherian rings: comparison with the completion. Preprint (2023), 62p.  arXiv:2311.05338 [math.AC]


D. Herbera and J. Sánchez. The inversion height of the free field is infinite. Sel. Math. New Ser. 21 (2015) 883-929.


D. Herbera and P. Príhoda. Infinitely generated projective modules over pullbacks of rings. Trans. Amer. Math. Soc. 366 (2014), no. 3, 1433-1454.


D. Herbera and J. Trlifaj. Almost free modules and Mittag-Leffler conditions. Advances in Mathematics 229 (2012) 3436–3467.


D. Herbera and P. Príhoda. Big projective modules over noetherian semilocal rings. J. Reine und Angew.Math 648 (2010) 111-148.


L. Angeleri-Hügel, D. Herbera and J. Trlifaj. Baer and Mittag-Leffler modules over Tame Hereditary Algebras. Mathematische Zeitschrift 265 (2010) 1-19.